Metamath Proof Explorer


Theorem fvmptiunrelexplb1d

Description: If the indexed union ranges over the first power of the relation, then the relation is a subset of the appliction of the function to the relation. (Contributed by RP, 22-Jul-2020)

Ref Expression
Hypotheses fvmptiunrelexplb1d.c 𝐶 = ( 𝑟 ∈ V ↦ 𝑛𝑁 ( 𝑟𝑟 𝑛 ) )
fvmptiunrelexplb1d.r ( 𝜑𝑅 ∈ V )
fvmptiunrelexplb1d.n ( 𝜑𝑁 ∈ V )
fvmptiunrelexplb1d.1 ( 𝜑 → 1 ∈ 𝑁 )
Assertion fvmptiunrelexplb1d ( 𝜑𝑅 ⊆ ( 𝐶𝑅 ) )

Proof

Step Hyp Ref Expression
1 fvmptiunrelexplb1d.c 𝐶 = ( 𝑟 ∈ V ↦ 𝑛𝑁 ( 𝑟𝑟 𝑛 ) )
2 fvmptiunrelexplb1d.r ( 𝜑𝑅 ∈ V )
3 fvmptiunrelexplb1d.n ( 𝜑𝑁 ∈ V )
4 fvmptiunrelexplb1d.1 ( 𝜑 → 1 ∈ 𝑁 )
5 oveq2 ( 𝑛 = 1 → ( 𝑅𝑟 𝑛 ) = ( 𝑅𝑟 1 ) )
6 5 ssiun2s ( 1 ∈ 𝑁 → ( 𝑅𝑟 1 ) ⊆ 𝑛𝑁 ( 𝑅𝑟 𝑛 ) )
7 4 6 syl ( 𝜑 → ( 𝑅𝑟 1 ) ⊆ 𝑛𝑁 ( 𝑅𝑟 𝑛 ) )
8 2 relexp1d ( 𝜑 → ( 𝑅𝑟 1 ) = 𝑅 )
9 oveq1 ( 𝑟 = 𝑅 → ( 𝑟𝑟 𝑛 ) = ( 𝑅𝑟 𝑛 ) )
10 9 iuneq2d ( 𝑟 = 𝑅 𝑛𝑁 ( 𝑟𝑟 𝑛 ) = 𝑛𝑁 ( 𝑅𝑟 𝑛 ) )
11 ovex ( 𝑅𝑟 𝑛 ) ∈ V
12 11 rgenw 𝑛𝑁 ( 𝑅𝑟 𝑛 ) ∈ V
13 iunexg ( ( 𝑁 ∈ V ∧ ∀ 𝑛𝑁 ( 𝑅𝑟 𝑛 ) ∈ V ) → 𝑛𝑁 ( 𝑅𝑟 𝑛 ) ∈ V )
14 3 12 13 sylancl ( 𝜑 𝑛𝑁 ( 𝑅𝑟 𝑛 ) ∈ V )
15 1 10 2 14 fvmptd3 ( 𝜑 → ( 𝐶𝑅 ) = 𝑛𝑁 ( 𝑅𝑟 𝑛 ) )
16 15 eqcomd ( 𝜑 𝑛𝑁 ( 𝑅𝑟 𝑛 ) = ( 𝐶𝑅 ) )
17 7 8 16 3sstr3d ( 𝜑𝑅 ⊆ ( 𝐶𝑅 ) )