| Step |
Hyp |
Ref |
Expression |
| 1 |
|
df-ne |
|- ( K =/= M <-> -. K = M ) |
| 2 |
|
elfzuz2 |
|- ( K e. ( M ... N ) -> N e. ( ZZ>= ` M ) ) |
| 3 |
|
elfzp12 |
|- ( N e. ( ZZ>= ` M ) -> ( K e. ( M ... N ) <-> ( K = M \/ K e. ( ( M + 1 ) ... N ) ) ) ) |
| 4 |
2 3
|
syl |
|- ( K e. ( M ... N ) -> ( K e. ( M ... N ) <-> ( K = M \/ K e. ( ( M + 1 ) ... N ) ) ) ) |
| 5 |
4
|
ibi |
|- ( K e. ( M ... N ) -> ( K = M \/ K e. ( ( M + 1 ) ... N ) ) ) |
| 6 |
5
|
orcanai |
|- ( ( K e. ( M ... N ) /\ -. K = M ) -> K e. ( ( M + 1 ) ... N ) ) |
| 7 |
1 6
|
sylan2b |
|- ( ( K e. ( M ... N ) /\ K =/= M ) -> K e. ( ( M + 1 ) ... N ) ) |