| Step |
Hyp |
Ref |
Expression |
| 1 |
|
gcdi.1 |
|- K e. NN0 |
| 2 |
|
gcdi.2 |
|- R e. NN0 |
| 3 |
|
gcdmodi.3 |
|- N e. NN |
| 4 |
|
gcdmodi.4 |
|- ( K mod N ) = ( R mod N ) |
| 5 |
|
gcdmodi.5 |
|- ( N gcd R ) = G |
| 6 |
4
|
oveq1i |
|- ( ( K mod N ) gcd N ) = ( ( R mod N ) gcd N ) |
| 7 |
1
|
nn0zi |
|- K e. ZZ |
| 8 |
|
modgcd |
|- ( ( K e. ZZ /\ N e. NN ) -> ( ( K mod N ) gcd N ) = ( K gcd N ) ) |
| 9 |
7 3 8
|
mp2an |
|- ( ( K mod N ) gcd N ) = ( K gcd N ) |
| 10 |
2
|
nn0zi |
|- R e. ZZ |
| 11 |
|
modgcd |
|- ( ( R e. ZZ /\ N e. NN ) -> ( ( R mod N ) gcd N ) = ( R gcd N ) ) |
| 12 |
10 3 11
|
mp2an |
|- ( ( R mod N ) gcd N ) = ( R gcd N ) |
| 13 |
6 9 12
|
3eqtr3i |
|- ( K gcd N ) = ( R gcd N ) |
| 14 |
3
|
nnzi |
|- N e. ZZ |
| 15 |
|
gcdcom |
|- ( ( R e. ZZ /\ N e. ZZ ) -> ( R gcd N ) = ( N gcd R ) ) |
| 16 |
10 14 15
|
mp2an |
|- ( R gcd N ) = ( N gcd R ) |
| 17 |
13 16 5
|
3eqtri |
|- ( K gcd N ) = G |