| Step |
Hyp |
Ref |
Expression |
| 1 |
|
gcdi.1 |
⊢ 𝐾 ∈ ℕ0 |
| 2 |
|
gcdi.2 |
⊢ 𝑅 ∈ ℕ0 |
| 3 |
|
gcdmodi.3 |
⊢ 𝑁 ∈ ℕ |
| 4 |
|
gcdmodi.4 |
⊢ ( 𝐾 mod 𝑁 ) = ( 𝑅 mod 𝑁 ) |
| 5 |
|
gcdmodi.5 |
⊢ ( 𝑁 gcd 𝑅 ) = 𝐺 |
| 6 |
4
|
oveq1i |
⊢ ( ( 𝐾 mod 𝑁 ) gcd 𝑁 ) = ( ( 𝑅 mod 𝑁 ) gcd 𝑁 ) |
| 7 |
1
|
nn0zi |
⊢ 𝐾 ∈ ℤ |
| 8 |
|
modgcd |
⊢ ( ( 𝐾 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → ( ( 𝐾 mod 𝑁 ) gcd 𝑁 ) = ( 𝐾 gcd 𝑁 ) ) |
| 9 |
7 3 8
|
mp2an |
⊢ ( ( 𝐾 mod 𝑁 ) gcd 𝑁 ) = ( 𝐾 gcd 𝑁 ) |
| 10 |
2
|
nn0zi |
⊢ 𝑅 ∈ ℤ |
| 11 |
|
modgcd |
⊢ ( ( 𝑅 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → ( ( 𝑅 mod 𝑁 ) gcd 𝑁 ) = ( 𝑅 gcd 𝑁 ) ) |
| 12 |
10 3 11
|
mp2an |
⊢ ( ( 𝑅 mod 𝑁 ) gcd 𝑁 ) = ( 𝑅 gcd 𝑁 ) |
| 13 |
6 9 12
|
3eqtr3i |
⊢ ( 𝐾 gcd 𝑁 ) = ( 𝑅 gcd 𝑁 ) |
| 14 |
3
|
nnzi |
⊢ 𝑁 ∈ ℤ |
| 15 |
|
gcdcom |
⊢ ( ( 𝑅 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑅 gcd 𝑁 ) = ( 𝑁 gcd 𝑅 ) ) |
| 16 |
10 14 15
|
mp2an |
⊢ ( 𝑅 gcd 𝑁 ) = ( 𝑁 gcd 𝑅 ) |
| 17 |
13 16 5
|
3eqtri |
⊢ ( 𝐾 gcd 𝑁 ) = 𝐺 |