| Step |
Hyp |
Ref |
Expression |
| 1 |
|
2re |
|- 2 e. RR |
| 2 |
1
|
a1i |
|- ( N e. ( ZZ>= ` 2 ) -> 2 e. RR ) |
| 3 |
|
eluzelre |
|- ( N e. ( ZZ>= ` 2 ) -> N e. RR ) |
| 4 |
2 3
|
remulcld |
|- ( N e. ( ZZ>= ` 2 ) -> ( 2 x. N ) e. RR ) |
| 5 |
|
eluzle |
|- ( N e. ( ZZ>= ` 2 ) -> 2 <_ N ) |
| 6 |
|
2m1e1 |
|- ( 2 - 1 ) = 1 |
| 7 |
6
|
a1i |
|- ( N e. ( ZZ>= ` 2 ) -> ( 2 - 1 ) = 1 ) |
| 8 |
7
|
oveq1d |
|- ( N e. ( ZZ>= ` 2 ) -> ( ( 2 - 1 ) x. N ) = ( 1 x. N ) ) |
| 9 |
|
eluzelcn |
|- ( N e. ( ZZ>= ` 2 ) -> N e. CC ) |
| 10 |
9
|
mullidd |
|- ( N e. ( ZZ>= ` 2 ) -> ( 1 x. N ) = N ) |
| 11 |
8 10
|
eqtrd |
|- ( N e. ( ZZ>= ` 2 ) -> ( ( 2 - 1 ) x. N ) = N ) |
| 12 |
5 11
|
breqtrrd |
|- ( N e. ( ZZ>= ` 2 ) -> 2 <_ ( ( 2 - 1 ) x. N ) ) |
| 13 |
|
2cnd |
|- ( N e. ( ZZ>= ` 2 ) -> 2 e. CC ) |
| 14 |
13 9
|
mulsubfacd |
|- ( N e. ( ZZ>= ` 2 ) -> ( ( 2 x. N ) - N ) = ( ( 2 - 1 ) x. N ) ) |
| 15 |
12 14
|
breqtrrd |
|- ( N e. ( ZZ>= ` 2 ) -> 2 <_ ( ( 2 x. N ) - N ) ) |
| 16 |
2 4 3 15
|
lesubd |
|- ( N e. ( ZZ>= ` 2 ) -> N <_ ( ( 2 x. N ) - 2 ) ) |
| 17 |
13 9
|
muls1d |
|- ( N e. ( ZZ>= ` 2 ) -> ( 2 x. ( N - 1 ) ) = ( ( 2 x. N ) - 2 ) ) |
| 18 |
16 17
|
breqtrrd |
|- ( N e. ( ZZ>= ` 2 ) -> N <_ ( 2 x. ( N - 1 ) ) ) |
| 19 |
|
1red |
|- ( N e. ( ZZ>= ` 2 ) -> 1 e. RR ) |
| 20 |
3 19
|
resubcld |
|- ( N e. ( ZZ>= ` 2 ) -> ( N - 1 ) e. RR ) |
| 21 |
|
2rp |
|- 2 e. RR+ |
| 22 |
21
|
a1i |
|- ( N e. ( ZZ>= ` 2 ) -> 2 e. RR+ ) |
| 23 |
3 20 22
|
ledivmuld |
|- ( N e. ( ZZ>= ` 2 ) -> ( ( N / 2 ) <_ ( N - 1 ) <-> N <_ ( 2 x. ( N - 1 ) ) ) ) |
| 24 |
18 23
|
mpbird |
|- ( N e. ( ZZ>= ` 2 ) -> ( N / 2 ) <_ ( N - 1 ) ) |