Metamath Proof Explorer


Theorem ge2halflem1

Description: Half of an integer greater than 1 is less than or equal to the integer minus 1. (Contributed by AV, 1-Sep-2025)

Ref Expression
Assertion ge2halflem1
|- ( N e. ( ZZ>= ` 2 ) -> ( N / 2 ) <_ ( N - 1 ) )

Proof

Step Hyp Ref Expression
1 2re
 |-  2 e. RR
2 1 a1i
 |-  ( N e. ( ZZ>= ` 2 ) -> 2 e. RR )
3 eluzelre
 |-  ( N e. ( ZZ>= ` 2 ) -> N e. RR )
4 2 3 remulcld
 |-  ( N e. ( ZZ>= ` 2 ) -> ( 2 x. N ) e. RR )
5 eluzle
 |-  ( N e. ( ZZ>= ` 2 ) -> 2 <_ N )
6 2m1e1
 |-  ( 2 - 1 ) = 1
7 6 a1i
 |-  ( N e. ( ZZ>= ` 2 ) -> ( 2 - 1 ) = 1 )
8 7 oveq1d
 |-  ( N e. ( ZZ>= ` 2 ) -> ( ( 2 - 1 ) x. N ) = ( 1 x. N ) )
9 eluzelcn
 |-  ( N e. ( ZZ>= ` 2 ) -> N e. CC )
10 9 mullidd
 |-  ( N e. ( ZZ>= ` 2 ) -> ( 1 x. N ) = N )
11 8 10 eqtrd
 |-  ( N e. ( ZZ>= ` 2 ) -> ( ( 2 - 1 ) x. N ) = N )
12 5 11 breqtrrd
 |-  ( N e. ( ZZ>= ` 2 ) -> 2 <_ ( ( 2 - 1 ) x. N ) )
13 2cnd
 |-  ( N e. ( ZZ>= ` 2 ) -> 2 e. CC )
14 13 9 mulsubfacd
 |-  ( N e. ( ZZ>= ` 2 ) -> ( ( 2 x. N ) - N ) = ( ( 2 - 1 ) x. N ) )
15 12 14 breqtrrd
 |-  ( N e. ( ZZ>= ` 2 ) -> 2 <_ ( ( 2 x. N ) - N ) )
16 2 4 3 15 lesubd
 |-  ( N e. ( ZZ>= ` 2 ) -> N <_ ( ( 2 x. N ) - 2 ) )
17 13 9 muls1d
 |-  ( N e. ( ZZ>= ` 2 ) -> ( 2 x. ( N - 1 ) ) = ( ( 2 x. N ) - 2 ) )
18 16 17 breqtrrd
 |-  ( N e. ( ZZ>= ` 2 ) -> N <_ ( 2 x. ( N - 1 ) ) )
19 1red
 |-  ( N e. ( ZZ>= ` 2 ) -> 1 e. RR )
20 3 19 resubcld
 |-  ( N e. ( ZZ>= ` 2 ) -> ( N - 1 ) e. RR )
21 2rp
 |-  2 e. RR+
22 21 a1i
 |-  ( N e. ( ZZ>= ` 2 ) -> 2 e. RR+ )
23 3 20 22 ledivmuld
 |-  ( N e. ( ZZ>= ` 2 ) -> ( ( N / 2 ) <_ ( N - 1 ) <-> N <_ ( 2 x. ( N - 1 ) ) ) )
24 18 23 mpbird
 |-  ( N e. ( ZZ>= ` 2 ) -> ( N / 2 ) <_ ( N - 1 ) )