Metamath Proof Explorer


Theorem ge2halflem1

Description: Half of an integer greater than 1 is less than or equal to the integer minus 1. (Contributed by AV, 1-Sep-2025)

Ref Expression
Assertion ge2halflem1 N 2 N 2 N 1

Proof

Step Hyp Ref Expression
1 2re 2
2 1 a1i N 2 2
3 eluzelre N 2 N
4 2 3 remulcld N 2 2 N
5 eluzle N 2 2 N
6 2m1e1 2 1 = 1
7 6 a1i N 2 2 1 = 1
8 7 oveq1d N 2 2 1 N = 1 N
9 eluzelcn N 2 N
10 9 mullidd N 2 1 N = N
11 8 10 eqtrd N 2 2 1 N = N
12 5 11 breqtrrd N 2 2 2 1 N
13 2cnd N 2 2
14 13 9 mulsubfacd N 2 2 N N = 2 1 N
15 12 14 breqtrrd N 2 2 2 N N
16 2 4 3 15 lesubd N 2 N 2 N 2
17 13 9 muls1d N 2 2 N 1 = 2 N 2
18 16 17 breqtrrd N 2 N 2 N 1
19 1red N 2 1
20 3 19 resubcld N 2 N 1
21 2rp 2 +
22 21 a1i N 2 2 +
23 3 20 22 ledivmuld N 2 N 2 N 1 N 2 N 1
24 18 23 mpbird N 2 N 2 N 1