| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ghmghmrn.u |
|- U = ( T |`s ran F ) |
| 2 |
|
ghmrn |
|- ( F e. ( S GrpHom T ) -> ran F e. ( SubGrp ` T ) ) |
| 3 |
|
ssid |
|- ran F C_ ran F |
| 4 |
1
|
resghm2b |
|- ( ( ran F e. ( SubGrp ` T ) /\ ran F C_ ran F ) -> ( F e. ( S GrpHom T ) <-> F e. ( S GrpHom U ) ) ) |
| 5 |
3 4
|
mpan2 |
|- ( ran F e. ( SubGrp ` T ) -> ( F e. ( S GrpHom T ) <-> F e. ( S GrpHom U ) ) ) |
| 6 |
5
|
biimpd |
|- ( ran F e. ( SubGrp ` T ) -> ( F e. ( S GrpHom T ) -> F e. ( S GrpHom U ) ) ) |
| 7 |
2 6
|
mpcom |
|- ( F e. ( S GrpHom T ) -> F e. ( S GrpHom U ) ) |