Description: The GLB of the set of two comparable elements in a poset is the less one of the two. (Contributed by Zhi Wang, 26-Sep-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lubpr.k | |- ( ph -> K e. Poset ) |
|
| lubpr.b | |- B = ( Base ` K ) |
||
| lubpr.x | |- ( ph -> X e. B ) |
||
| lubpr.y | |- ( ph -> Y e. B ) |
||
| lubpr.l | |- .<_ = ( le ` K ) |
||
| lubpr.c | |- ( ph -> X .<_ Y ) |
||
| lubpr.s | |- ( ph -> S = { X , Y } ) |
||
| glbpr.g | |- G = ( glb ` K ) |
||
| Assertion | glbpr | |- ( ph -> ( G ` S ) = X ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lubpr.k | |- ( ph -> K e. Poset ) |
|
| 2 | lubpr.b | |- B = ( Base ` K ) |
|
| 3 | lubpr.x | |- ( ph -> X e. B ) |
|
| 4 | lubpr.y | |- ( ph -> Y e. B ) |
|
| 5 | lubpr.l | |- .<_ = ( le ` K ) |
|
| 6 | lubpr.c | |- ( ph -> X .<_ Y ) |
|
| 7 | lubpr.s | |- ( ph -> S = { X , Y } ) |
|
| 8 | glbpr.g | |- G = ( glb ` K ) |
|
| 9 | 1 2 3 4 5 6 7 8 | glbprlem | |- ( ph -> ( S e. dom G /\ ( G ` S ) = X ) ) |
| 10 | 9 | simprd | |- ( ph -> ( G ` S ) = X ) |