Description: A generic neighborhood space is a function with a range that is a subset of the powerset of the powerset of its domain. (Contributed by RP, 15-Apr-2021)
Ref | Expression | ||
---|---|---|---|
Hypothesis | gneispace.a | |- A = { f | ( f : dom f --> ( ~P ( ~P dom f \ { (/) } ) \ { (/) } ) /\ A. p e. dom f A. n e. ( f ` p ) ( p e. n /\ A. s e. ~P dom f ( n C_ s -> s e. ( f ` p ) ) ) ) } |
|
Assertion | gneispacef | |- ( F e. A -> F : dom F --> ( ~P ( ~P dom F \ { (/) } ) \ { (/) } ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gneispace.a | |- A = { f | ( f : dom f --> ( ~P ( ~P dom f \ { (/) } ) \ { (/) } ) /\ A. p e. dom f A. n e. ( f ` p ) ( p e. n /\ A. s e. ~P dom f ( n C_ s -> s e. ( f ` p ) ) ) ) } |
|
2 | 1 | gneispace2 | |- ( F e. A -> ( F e. A <-> ( F : dom F --> ( ~P ( ~P dom F \ { (/) } ) \ { (/) } ) /\ A. p e. dom F A. n e. ( F ` p ) ( p e. n /\ A. s e. ~P dom F ( n C_ s -> s e. ( F ` p ) ) ) ) ) ) |
3 | 2 | ibi | |- ( F e. A -> ( F : dom F --> ( ~P ( ~P dom F \ { (/) } ) \ { (/) } ) /\ A. p e. dom F A. n e. ( F ` p ) ( p e. n /\ A. s e. ~P dom F ( n C_ s -> s e. ( F ` p ) ) ) ) ) |
4 | 3 | simpld | |- ( F e. A -> F : dom F --> ( ~P ( ~P dom F \ { (/) } ) \ { (/) } ) ) |