Metamath Proof Explorer


Theorem gneispacef

Description: A generic neighborhood space is a function with a range that is a subset of the powerset of the powerset of its domain. (Contributed by RP, 15-Apr-2021)

Ref Expression
Hypothesis gneispace.a A = f | f : dom f 𝒫 𝒫 dom f p dom f n f p p n s 𝒫 dom f n s s f p
Assertion gneispacef F A F : dom F 𝒫 𝒫 dom F

Proof

Step Hyp Ref Expression
1 gneispace.a A = f | f : dom f 𝒫 𝒫 dom f p dom f n f p p n s 𝒫 dom f n s s f p
2 1 gneispace2 F A F A F : dom F 𝒫 𝒫 dom F p dom F n F p p n s 𝒫 dom F n s s F p
3 2 ibi F A F : dom F 𝒫 𝒫 dom F p dom F n F p p n s 𝒫 dom F n s s F p
4 3 simpld F A F : dom F 𝒫 𝒫 dom F