Metamath Proof Explorer
Table of Contents - 21.38.3. Shorter primitive equivalent of ax-groth
- Grothendieck universes are closed under collection
- gru0eld
- grusucd
- r1rankcld
- grur1cld
- grurankcld
- grurankrcld
- cscott
- df-scott
- scotteqd
- scotteq
- nfscott
- scottabf
- scottab
- scottabes
- scottss
- elscottab
- scottex2
- scotteld
- scottelrankd
- scottrankd
- gruscottcld
- ccoll
- df-coll
- dfcoll2
- colleq12d
- colleq1
- colleq2
- nfcoll
- collexd
- cpcolld
- cpcoll2d
- grucollcld
- Minimal universes
- ismnu
- mnuop123d
- mnussd
- mnuss2d
- mnu0eld
- mnuop23d
- mnupwd
- mnusnd
- mnuprssd
- mnuprss2d
- mnuop3d
- mnuprdlem1
- mnuprdlem2
- mnuprdlem3
- mnuprdlem4
- mnuprd
- mnuunid
- mnuund
- mnutrcld
- mnutrd
- mnurndlem1
- mnurndlem2
- mnurnd
- mnugrud
- grumnudlem
- grumnud
- grumnueq
- Primitive equivalent of ax-groth
- expandan
- expandexn
- expandral
- expandrexn
- expandrex
- expanduniss
- ismnuprim
- rr-grothprimbi
- inagrud
- inaex
- gruex
- rr-groth
- rr-grothprim
- ismnushort
- dfuniv2
- rr-grothshortbi
- rr-grothshort