Description: Minimal universes are closed under union. (Contributed by Rohan Ridenour, 13-Aug-2023)
Ref | Expression | ||
---|---|---|---|
Hypotheses | mnuunid.1 | |
|
mnuunid.2 | |
||
mnuunid.3 | |
||
Assertion | mnuunid | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mnuunid.1 | |
|
2 | mnuunid.2 | |
|
3 | mnuunid.3 | |
|
4 | 3 | snssd | |
5 | 1 2 3 4 | mnuop3d | |
6 | simprl | |
|
7 | sseq2 | |
|
8 | 7 | adantl | |
9 | elssuni | |
|
10 | 9 | rgen | |
11 | simprr | |
|
12 | eleq2 | |
|
13 | 12 | rexsng | |
14 | 3 13 | syl | |
15 | eleq2 | |
|
16 | unieq | |
|
17 | 16 | sseq1d | |
18 | 15 17 | anbi12d | |
19 | 18 | rexsng | |
20 | 3 19 | syl | |
21 | 14 20 | imbi12d | |
22 | anclb | |
|
23 | 21 22 | bitr4di | |
24 | 23 | imbi2d | |
25 | pm5.4 | |
|
26 | 24 25 | bitrdi | |
27 | 26 | ralbidv2 | |
28 | 27 | adantr | |
29 | 11 28 | mpbid | |
30 | sstr2 | |
|
31 | 30 | ral2imi | |
32 | 10 29 31 | mpsyl | |
33 | unissb | |
|
34 | 32 33 | sylibr | |
35 | 6 8 34 | rspcedvd | |
36 | 5 35 | rexlimddv | |
37 | 1 2 36 | mnuss2d | |