Step |
Hyp |
Ref |
Expression |
1 |
|
mnuunid.1 |
⊢ 𝑀 = { 𝑘 ∣ ∀ 𝑙 ∈ 𝑘 ( 𝒫 𝑙 ⊆ 𝑘 ∧ ∀ 𝑚 ∃ 𝑛 ∈ 𝑘 ( 𝒫 𝑙 ⊆ 𝑛 ∧ ∀ 𝑝 ∈ 𝑙 ( ∃ 𝑞 ∈ 𝑘 ( 𝑝 ∈ 𝑞 ∧ 𝑞 ∈ 𝑚 ) → ∃ 𝑟 ∈ 𝑚 ( 𝑝 ∈ 𝑟 ∧ ∪ 𝑟 ⊆ 𝑛 ) ) ) ) } |
2 |
|
mnuunid.2 |
⊢ ( 𝜑 → 𝑈 ∈ 𝑀 ) |
3 |
|
mnuunid.3 |
⊢ ( 𝜑 → 𝐴 ∈ 𝑈 ) |
4 |
3
|
snssd |
⊢ ( 𝜑 → { 𝐴 } ⊆ 𝑈 ) |
5 |
1 2 3 4
|
mnuop3d |
⊢ ( 𝜑 → ∃ 𝑤 ∈ 𝑈 ∀ 𝑖 ∈ 𝐴 ( ∃ 𝑣 ∈ { 𝐴 } 𝑖 ∈ 𝑣 → ∃ 𝑢 ∈ { 𝐴 } ( 𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤 ) ) ) |
6 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑤 ∈ 𝑈 ∧ ∀ 𝑖 ∈ 𝐴 ( ∃ 𝑣 ∈ { 𝐴 } 𝑖 ∈ 𝑣 → ∃ 𝑢 ∈ { 𝐴 } ( 𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤 ) ) ) ) → 𝑤 ∈ 𝑈 ) |
7 |
|
sseq2 |
⊢ ( 𝑎 = 𝑤 → ( ∪ 𝐴 ⊆ 𝑎 ↔ ∪ 𝐴 ⊆ 𝑤 ) ) |
8 |
7
|
adantl |
⊢ ( ( ( 𝜑 ∧ ( 𝑤 ∈ 𝑈 ∧ ∀ 𝑖 ∈ 𝐴 ( ∃ 𝑣 ∈ { 𝐴 } 𝑖 ∈ 𝑣 → ∃ 𝑢 ∈ { 𝐴 } ( 𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤 ) ) ) ) ∧ 𝑎 = 𝑤 ) → ( ∪ 𝐴 ⊆ 𝑎 ↔ ∪ 𝐴 ⊆ 𝑤 ) ) |
9 |
|
elssuni |
⊢ ( 𝑖 ∈ 𝐴 → 𝑖 ⊆ ∪ 𝐴 ) |
10 |
9
|
rgen |
⊢ ∀ 𝑖 ∈ 𝐴 𝑖 ⊆ ∪ 𝐴 |
11 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑤 ∈ 𝑈 ∧ ∀ 𝑖 ∈ 𝐴 ( ∃ 𝑣 ∈ { 𝐴 } 𝑖 ∈ 𝑣 → ∃ 𝑢 ∈ { 𝐴 } ( 𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤 ) ) ) ) → ∀ 𝑖 ∈ 𝐴 ( ∃ 𝑣 ∈ { 𝐴 } 𝑖 ∈ 𝑣 → ∃ 𝑢 ∈ { 𝐴 } ( 𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤 ) ) ) |
12 |
|
eleq2 |
⊢ ( 𝑣 = 𝐴 → ( 𝑖 ∈ 𝑣 ↔ 𝑖 ∈ 𝐴 ) ) |
13 |
12
|
rexsng |
⊢ ( 𝐴 ∈ 𝑈 → ( ∃ 𝑣 ∈ { 𝐴 } 𝑖 ∈ 𝑣 ↔ 𝑖 ∈ 𝐴 ) ) |
14 |
3 13
|
syl |
⊢ ( 𝜑 → ( ∃ 𝑣 ∈ { 𝐴 } 𝑖 ∈ 𝑣 ↔ 𝑖 ∈ 𝐴 ) ) |
15 |
|
eleq2 |
⊢ ( 𝑢 = 𝐴 → ( 𝑖 ∈ 𝑢 ↔ 𝑖 ∈ 𝐴 ) ) |
16 |
|
unieq |
⊢ ( 𝑢 = 𝐴 → ∪ 𝑢 = ∪ 𝐴 ) |
17 |
16
|
sseq1d |
⊢ ( 𝑢 = 𝐴 → ( ∪ 𝑢 ⊆ 𝑤 ↔ ∪ 𝐴 ⊆ 𝑤 ) ) |
18 |
15 17
|
anbi12d |
⊢ ( 𝑢 = 𝐴 → ( ( 𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤 ) ↔ ( 𝑖 ∈ 𝐴 ∧ ∪ 𝐴 ⊆ 𝑤 ) ) ) |
19 |
18
|
rexsng |
⊢ ( 𝐴 ∈ 𝑈 → ( ∃ 𝑢 ∈ { 𝐴 } ( 𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤 ) ↔ ( 𝑖 ∈ 𝐴 ∧ ∪ 𝐴 ⊆ 𝑤 ) ) ) |
20 |
3 19
|
syl |
⊢ ( 𝜑 → ( ∃ 𝑢 ∈ { 𝐴 } ( 𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤 ) ↔ ( 𝑖 ∈ 𝐴 ∧ ∪ 𝐴 ⊆ 𝑤 ) ) ) |
21 |
14 20
|
imbi12d |
⊢ ( 𝜑 → ( ( ∃ 𝑣 ∈ { 𝐴 } 𝑖 ∈ 𝑣 → ∃ 𝑢 ∈ { 𝐴 } ( 𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤 ) ) ↔ ( 𝑖 ∈ 𝐴 → ( 𝑖 ∈ 𝐴 ∧ ∪ 𝐴 ⊆ 𝑤 ) ) ) ) |
22 |
|
anclb |
⊢ ( ( 𝑖 ∈ 𝐴 → ∪ 𝐴 ⊆ 𝑤 ) ↔ ( 𝑖 ∈ 𝐴 → ( 𝑖 ∈ 𝐴 ∧ ∪ 𝐴 ⊆ 𝑤 ) ) ) |
23 |
21 22
|
bitr4di |
⊢ ( 𝜑 → ( ( ∃ 𝑣 ∈ { 𝐴 } 𝑖 ∈ 𝑣 → ∃ 𝑢 ∈ { 𝐴 } ( 𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤 ) ) ↔ ( 𝑖 ∈ 𝐴 → ∪ 𝐴 ⊆ 𝑤 ) ) ) |
24 |
23
|
imbi2d |
⊢ ( 𝜑 → ( ( 𝑖 ∈ 𝐴 → ( ∃ 𝑣 ∈ { 𝐴 } 𝑖 ∈ 𝑣 → ∃ 𝑢 ∈ { 𝐴 } ( 𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤 ) ) ) ↔ ( 𝑖 ∈ 𝐴 → ( 𝑖 ∈ 𝐴 → ∪ 𝐴 ⊆ 𝑤 ) ) ) ) |
25 |
|
pm5.4 |
⊢ ( ( 𝑖 ∈ 𝐴 → ( 𝑖 ∈ 𝐴 → ∪ 𝐴 ⊆ 𝑤 ) ) ↔ ( 𝑖 ∈ 𝐴 → ∪ 𝐴 ⊆ 𝑤 ) ) |
26 |
24 25
|
bitrdi |
⊢ ( 𝜑 → ( ( 𝑖 ∈ 𝐴 → ( ∃ 𝑣 ∈ { 𝐴 } 𝑖 ∈ 𝑣 → ∃ 𝑢 ∈ { 𝐴 } ( 𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤 ) ) ) ↔ ( 𝑖 ∈ 𝐴 → ∪ 𝐴 ⊆ 𝑤 ) ) ) |
27 |
26
|
ralbidv2 |
⊢ ( 𝜑 → ( ∀ 𝑖 ∈ 𝐴 ( ∃ 𝑣 ∈ { 𝐴 } 𝑖 ∈ 𝑣 → ∃ 𝑢 ∈ { 𝐴 } ( 𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤 ) ) ↔ ∀ 𝑖 ∈ 𝐴 ∪ 𝐴 ⊆ 𝑤 ) ) |
28 |
27
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑤 ∈ 𝑈 ∧ ∀ 𝑖 ∈ 𝐴 ( ∃ 𝑣 ∈ { 𝐴 } 𝑖 ∈ 𝑣 → ∃ 𝑢 ∈ { 𝐴 } ( 𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤 ) ) ) ) → ( ∀ 𝑖 ∈ 𝐴 ( ∃ 𝑣 ∈ { 𝐴 } 𝑖 ∈ 𝑣 → ∃ 𝑢 ∈ { 𝐴 } ( 𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤 ) ) ↔ ∀ 𝑖 ∈ 𝐴 ∪ 𝐴 ⊆ 𝑤 ) ) |
29 |
11 28
|
mpbid |
⊢ ( ( 𝜑 ∧ ( 𝑤 ∈ 𝑈 ∧ ∀ 𝑖 ∈ 𝐴 ( ∃ 𝑣 ∈ { 𝐴 } 𝑖 ∈ 𝑣 → ∃ 𝑢 ∈ { 𝐴 } ( 𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤 ) ) ) ) → ∀ 𝑖 ∈ 𝐴 ∪ 𝐴 ⊆ 𝑤 ) |
30 |
|
sstr2 |
⊢ ( 𝑖 ⊆ ∪ 𝐴 → ( ∪ 𝐴 ⊆ 𝑤 → 𝑖 ⊆ 𝑤 ) ) |
31 |
30
|
ral2imi |
⊢ ( ∀ 𝑖 ∈ 𝐴 𝑖 ⊆ ∪ 𝐴 → ( ∀ 𝑖 ∈ 𝐴 ∪ 𝐴 ⊆ 𝑤 → ∀ 𝑖 ∈ 𝐴 𝑖 ⊆ 𝑤 ) ) |
32 |
10 29 31
|
mpsyl |
⊢ ( ( 𝜑 ∧ ( 𝑤 ∈ 𝑈 ∧ ∀ 𝑖 ∈ 𝐴 ( ∃ 𝑣 ∈ { 𝐴 } 𝑖 ∈ 𝑣 → ∃ 𝑢 ∈ { 𝐴 } ( 𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤 ) ) ) ) → ∀ 𝑖 ∈ 𝐴 𝑖 ⊆ 𝑤 ) |
33 |
|
unissb |
⊢ ( ∪ 𝐴 ⊆ 𝑤 ↔ ∀ 𝑖 ∈ 𝐴 𝑖 ⊆ 𝑤 ) |
34 |
32 33
|
sylibr |
⊢ ( ( 𝜑 ∧ ( 𝑤 ∈ 𝑈 ∧ ∀ 𝑖 ∈ 𝐴 ( ∃ 𝑣 ∈ { 𝐴 } 𝑖 ∈ 𝑣 → ∃ 𝑢 ∈ { 𝐴 } ( 𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤 ) ) ) ) → ∪ 𝐴 ⊆ 𝑤 ) |
35 |
6 8 34
|
rspcedvd |
⊢ ( ( 𝜑 ∧ ( 𝑤 ∈ 𝑈 ∧ ∀ 𝑖 ∈ 𝐴 ( ∃ 𝑣 ∈ { 𝐴 } 𝑖 ∈ 𝑣 → ∃ 𝑢 ∈ { 𝐴 } ( 𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤 ) ) ) ) → ∃ 𝑎 ∈ 𝑈 ∪ 𝐴 ⊆ 𝑎 ) |
36 |
5 35
|
rexlimddv |
⊢ ( 𝜑 → ∃ 𝑎 ∈ 𝑈 ∪ 𝐴 ⊆ 𝑎 ) |
37 |
1 2 36
|
mnuss2d |
⊢ ( 𝜑 → ∪ 𝐴 ∈ 𝑈 ) |