Metamath Proof Explorer


Theorem mnuss2d

Description: mnussd with arguments provided with an existential quantifier. (Contributed by Rohan Ridenour, 13-Aug-2023)

Ref Expression
Hypotheses mnuss2d.1 𝑀 = { 𝑘 ∣ ∀ 𝑙𝑘 ( 𝒫 𝑙𝑘 ∧ ∀ 𝑚𝑛𝑘 ( 𝒫 𝑙𝑛 ∧ ∀ 𝑝𝑙 ( ∃ 𝑞𝑘 ( 𝑝𝑞𝑞𝑚 ) → ∃ 𝑟𝑚 ( 𝑝𝑟 𝑟𝑛 ) ) ) ) }
mnuss2d.2 ( 𝜑𝑈𝑀 )
mnuss2d.3 ( 𝜑 → ∃ 𝑥𝑈 𝐴𝑥 )
Assertion mnuss2d ( 𝜑𝐴𝑈 )

Proof

Step Hyp Ref Expression
1 mnuss2d.1 𝑀 = { 𝑘 ∣ ∀ 𝑙𝑘 ( 𝒫 𝑙𝑘 ∧ ∀ 𝑚𝑛𝑘 ( 𝒫 𝑙𝑛 ∧ ∀ 𝑝𝑙 ( ∃ 𝑞𝑘 ( 𝑝𝑞𝑞𝑚 ) → ∃ 𝑟𝑚 ( 𝑝𝑟 𝑟𝑛 ) ) ) ) }
2 mnuss2d.2 ( 𝜑𝑈𝑀 )
3 mnuss2d.3 ( 𝜑 → ∃ 𝑥𝑈 𝐴𝑥 )
4 2 adantr ( ( 𝜑 ∧ ( 𝑥𝑈𝐴𝑥 ) ) → 𝑈𝑀 )
5 simprl ( ( 𝜑 ∧ ( 𝑥𝑈𝐴𝑥 ) ) → 𝑥𝑈 )
6 simprr ( ( 𝜑 ∧ ( 𝑥𝑈𝐴𝑥 ) ) → 𝐴𝑥 )
7 1 4 5 6 mnussd ( ( 𝜑 ∧ ( 𝑥𝑈𝐴𝑥 ) ) → 𝐴𝑈 )
8 3 7 rexlimddv ( 𝜑𝐴𝑈 )