Description: mnussd with arguments provided with an existential quantifier. (Contributed by Rohan Ridenour, 13-Aug-2023)
Ref | Expression | ||
---|---|---|---|
Hypotheses | mnuss2d.1 | ⊢ 𝑀 = { 𝑘 ∣ ∀ 𝑙 ∈ 𝑘 ( 𝒫 𝑙 ⊆ 𝑘 ∧ ∀ 𝑚 ∃ 𝑛 ∈ 𝑘 ( 𝒫 𝑙 ⊆ 𝑛 ∧ ∀ 𝑝 ∈ 𝑙 ( ∃ 𝑞 ∈ 𝑘 ( 𝑝 ∈ 𝑞 ∧ 𝑞 ∈ 𝑚 ) → ∃ 𝑟 ∈ 𝑚 ( 𝑝 ∈ 𝑟 ∧ ∪ 𝑟 ⊆ 𝑛 ) ) ) ) } | |
mnuss2d.2 | ⊢ ( 𝜑 → 𝑈 ∈ 𝑀 ) | ||
mnuss2d.3 | ⊢ ( 𝜑 → ∃ 𝑥 ∈ 𝑈 𝐴 ⊆ 𝑥 ) | ||
Assertion | mnuss2d | ⊢ ( 𝜑 → 𝐴 ∈ 𝑈 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mnuss2d.1 | ⊢ 𝑀 = { 𝑘 ∣ ∀ 𝑙 ∈ 𝑘 ( 𝒫 𝑙 ⊆ 𝑘 ∧ ∀ 𝑚 ∃ 𝑛 ∈ 𝑘 ( 𝒫 𝑙 ⊆ 𝑛 ∧ ∀ 𝑝 ∈ 𝑙 ( ∃ 𝑞 ∈ 𝑘 ( 𝑝 ∈ 𝑞 ∧ 𝑞 ∈ 𝑚 ) → ∃ 𝑟 ∈ 𝑚 ( 𝑝 ∈ 𝑟 ∧ ∪ 𝑟 ⊆ 𝑛 ) ) ) ) } | |
2 | mnuss2d.2 | ⊢ ( 𝜑 → 𝑈 ∈ 𝑀 ) | |
3 | mnuss2d.3 | ⊢ ( 𝜑 → ∃ 𝑥 ∈ 𝑈 𝐴 ⊆ 𝑥 ) | |
4 | 2 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑈 ∧ 𝐴 ⊆ 𝑥 ) ) → 𝑈 ∈ 𝑀 ) |
5 | simprl | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑈 ∧ 𝐴 ⊆ 𝑥 ) ) → 𝑥 ∈ 𝑈 ) | |
6 | simprr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑈 ∧ 𝐴 ⊆ 𝑥 ) ) → 𝐴 ⊆ 𝑥 ) | |
7 | 1 4 5 6 | mnussd | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑈 ∧ 𝐴 ⊆ 𝑥 ) ) → 𝐴 ∈ 𝑈 ) |
8 | 3 7 | rexlimddv | ⊢ ( 𝜑 → 𝐴 ∈ 𝑈 ) |