Metamath Proof Explorer


Theorem mnuss2d

Description: mnussd with arguments provided with an existential quantifier. (Contributed by Rohan Ridenour, 13-Aug-2023)

Ref Expression
Hypotheses mnuss2d.1 M=k|lk𝒫lkmnk𝒫lnplqkpqqmrmprrn
mnuss2d.2 φUM
mnuss2d.3 φxUAx
Assertion mnuss2d φAU

Proof

Step Hyp Ref Expression
1 mnuss2d.1 M=k|lk𝒫lkmnk𝒫lnplqkpqqmrmprrn
2 mnuss2d.2 φUM
3 mnuss2d.3 φxUAx
4 2 adantr φxUAxUM
5 simprl φxUAxxU
6 simprr φxUAxAx
7 1 4 5 6 mnussd φxUAxAU
8 3 7 rexlimddv φAU