Metamath Proof Explorer


Theorem mnussd

Description: Minimal universes are closed under subsets. (Contributed by Rohan Ridenour, 13-Aug-2023)

Ref Expression
Hypotheses mnussd.1 M=k|lk𝒫lkmnk𝒫lnplqkpqqmrmprrn
mnussd.2 φUM
mnussd.3 φAU
mnussd.4 φBA
Assertion mnussd φBU

Proof

Step Hyp Ref Expression
1 mnussd.1 M=k|lk𝒫lkmnk𝒫lnplqkpqqmrmprrn
2 mnussd.2 φUM
3 mnussd.3 φAU
4 mnussd.4 φBA
5 1 2 3 mnuop123d φ𝒫AUfwU𝒫AwiAvUivvfufiuuw
6 5 simpld φ𝒫AU
7 3 4 sselpwd φB𝒫A
8 6 7 sseldd φBU