Metamath Proof Explorer


Theorem mnussd

Description: Minimal universes are closed under subsets. (Contributed by Rohan Ridenour, 13-Aug-2023)

Ref Expression
Hypotheses mnussd.1 M = k | l k 𝒫 l k m n k 𝒫 l n p l q k p q q m r m p r r n
mnussd.2 φ U M
mnussd.3 φ A U
mnussd.4 φ B A
Assertion mnussd φ B U

Proof

Step Hyp Ref Expression
1 mnussd.1 M = k | l k 𝒫 l k m n k 𝒫 l n p l q k p q q m r m p r r n
2 mnussd.2 φ U M
3 mnussd.3 φ A U
4 mnussd.4 φ B A
5 1 2 3 mnuop123d φ 𝒫 A U f w U 𝒫 A w i A v U i v v f u f i u u w
6 5 simpld φ 𝒫 A U
7 3 4 sselpwd φ B 𝒫 A
8 6 7 sseldd φ B U