Metamath Proof Explorer


Theorem mnuop123d

Description: Operations of a minimal universe. (Contributed by Rohan Ridenour, 13-Aug-2023)

Ref Expression
Hypotheses mnuop123d.1 M = k | l k 𝒫 l k m n k 𝒫 l n p l q k p q q m r m p r r n
mnuop123d.2 φ U M
mnuop123d.3 φ A U
Assertion mnuop123d φ 𝒫 A U f w U 𝒫 A w i A v U i v v f u f i u u w

Proof

Step Hyp Ref Expression
1 mnuop123d.1 M = k | l k 𝒫 l k m n k 𝒫 l n p l q k p q q m r m p r r n
2 mnuop123d.2 φ U M
3 mnuop123d.3 φ A U
4 pweq z = A 𝒫 z = 𝒫 A
5 4 sseq1d z = A 𝒫 z U 𝒫 A U
6 4 sseq1d z = A 𝒫 z w 𝒫 A w
7 raleq z = A i z v U i v v f u f i u u w i A v U i v v f u f i u u w
8 6 7 anbi12d z = A 𝒫 z w i z v U i v v f u f i u u w 𝒫 A w i A v U i v v f u f i u u w
9 8 rexbidv z = A w U 𝒫 z w i z v U i v v f u f i u u w w U 𝒫 A w i A v U i v v f u f i u u w
10 9 albidv z = A f w U 𝒫 z w i z v U i v v f u f i u u w f w U 𝒫 A w i A v U i v v f u f i u u w
11 5 10 anbi12d z = A 𝒫 z U f w U 𝒫 z w i z v U i v v f u f i u u w 𝒫 A U f w U 𝒫 A w i A v U i v v f u f i u u w
12 1 ismnu U M U M z U 𝒫 z U f w U 𝒫 z w i z v U i v v f u f i u u w
13 12 ibi U M z U 𝒫 z U f w U 𝒫 z w i z v U i v v f u f i u u w
14 2 13 syl φ z U 𝒫 z U f w U 𝒫 z w i z v U i v v f u f i u u w
15 11 14 3 rspcdva φ 𝒫 A U f w U 𝒫 A w i A v U i v v f u f i u u w