Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Rohan Ridenour
Shorter primitive equivalent of ax-groth
Minimal universes
mnuop123d
Next ⟩
mnussd
Metamath Proof Explorer
Ascii
Unicode
Theorem
mnuop123d
Description:
Operations of a minimal universe.
(Contributed by
Rohan Ridenour
, 13-Aug-2023)
Ref
Expression
Hypotheses
mnuop123d.1
⊢
M
=
k
|
∀
l
∈
k
𝒫
l
⊆
k
∧
∀
m
∃
n
∈
k
𝒫
l
⊆
n
∧
∀
p
∈
l
∃
q
∈
k
p
∈
q
∧
q
∈
m
→
∃
r
∈
m
p
∈
r
∧
⋃
r
⊆
n
mnuop123d.2
⊢
φ
→
U
∈
M
mnuop123d.3
⊢
φ
→
A
∈
U
Assertion
mnuop123d
⊢
φ
→
𝒫
A
⊆
U
∧
∀
f
∃
w
∈
U
𝒫
A
⊆
w
∧
∀
i
∈
A
∃
v
∈
U
i
∈
v
∧
v
∈
f
→
∃
u
∈
f
i
∈
u
∧
⋃
u
⊆
w
Proof
Step
Hyp
Ref
Expression
1
mnuop123d.1
⊢
M
=
k
|
∀
l
∈
k
𝒫
l
⊆
k
∧
∀
m
∃
n
∈
k
𝒫
l
⊆
n
∧
∀
p
∈
l
∃
q
∈
k
p
∈
q
∧
q
∈
m
→
∃
r
∈
m
p
∈
r
∧
⋃
r
⊆
n
2
mnuop123d.2
⊢
φ
→
U
∈
M
3
mnuop123d.3
⊢
φ
→
A
∈
U
4
pweq
⊢
z
=
A
→
𝒫
z
=
𝒫
A
5
4
sseq1d
⊢
z
=
A
→
𝒫
z
⊆
U
↔
𝒫
A
⊆
U
6
4
sseq1d
⊢
z
=
A
→
𝒫
z
⊆
w
↔
𝒫
A
⊆
w
7
raleq
⊢
z
=
A
→
∀
i
∈
z
∃
v
∈
U
i
∈
v
∧
v
∈
f
→
∃
u
∈
f
i
∈
u
∧
⋃
u
⊆
w
↔
∀
i
∈
A
∃
v
∈
U
i
∈
v
∧
v
∈
f
→
∃
u
∈
f
i
∈
u
∧
⋃
u
⊆
w
8
6
7
anbi12d
⊢
z
=
A
→
𝒫
z
⊆
w
∧
∀
i
∈
z
∃
v
∈
U
i
∈
v
∧
v
∈
f
→
∃
u
∈
f
i
∈
u
∧
⋃
u
⊆
w
↔
𝒫
A
⊆
w
∧
∀
i
∈
A
∃
v
∈
U
i
∈
v
∧
v
∈
f
→
∃
u
∈
f
i
∈
u
∧
⋃
u
⊆
w
9
8
rexbidv
⊢
z
=
A
→
∃
w
∈
U
𝒫
z
⊆
w
∧
∀
i
∈
z
∃
v
∈
U
i
∈
v
∧
v
∈
f
→
∃
u
∈
f
i
∈
u
∧
⋃
u
⊆
w
↔
∃
w
∈
U
𝒫
A
⊆
w
∧
∀
i
∈
A
∃
v
∈
U
i
∈
v
∧
v
∈
f
→
∃
u
∈
f
i
∈
u
∧
⋃
u
⊆
w
10
9
albidv
⊢
z
=
A
→
∀
f
∃
w
∈
U
𝒫
z
⊆
w
∧
∀
i
∈
z
∃
v
∈
U
i
∈
v
∧
v
∈
f
→
∃
u
∈
f
i
∈
u
∧
⋃
u
⊆
w
↔
∀
f
∃
w
∈
U
𝒫
A
⊆
w
∧
∀
i
∈
A
∃
v
∈
U
i
∈
v
∧
v
∈
f
→
∃
u
∈
f
i
∈
u
∧
⋃
u
⊆
w
11
5
10
anbi12d
⊢
z
=
A
→
𝒫
z
⊆
U
∧
∀
f
∃
w
∈
U
𝒫
z
⊆
w
∧
∀
i
∈
z
∃
v
∈
U
i
∈
v
∧
v
∈
f
→
∃
u
∈
f
i
∈
u
∧
⋃
u
⊆
w
↔
𝒫
A
⊆
U
∧
∀
f
∃
w
∈
U
𝒫
A
⊆
w
∧
∀
i
∈
A
∃
v
∈
U
i
∈
v
∧
v
∈
f
→
∃
u
∈
f
i
∈
u
∧
⋃
u
⊆
w
12
1
ismnu
⊢
U
∈
M
→
U
∈
M
↔
∀
z
∈
U
𝒫
z
⊆
U
∧
∀
f
∃
w
∈
U
𝒫
z
⊆
w
∧
∀
i
∈
z
∃
v
∈
U
i
∈
v
∧
v
∈
f
→
∃
u
∈
f
i
∈
u
∧
⋃
u
⊆
w
13
12
ibi
⊢
U
∈
M
→
∀
z
∈
U
𝒫
z
⊆
U
∧
∀
f
∃
w
∈
U
𝒫
z
⊆
w
∧
∀
i
∈
z
∃
v
∈
U
i
∈
v
∧
v
∈
f
→
∃
u
∈
f
i
∈
u
∧
⋃
u
⊆
w
14
2
13
syl
⊢
φ
→
∀
z
∈
U
𝒫
z
⊆
U
∧
∀
f
∃
w
∈
U
𝒫
z
⊆
w
∧
∀
i
∈
z
∃
v
∈
U
i
∈
v
∧
v
∈
f
→
∃
u
∈
f
i
∈
u
∧
⋃
u
⊆
w
15
11
14
3
rspcdva
⊢
φ
→
𝒫
A
⊆
U
∧
∀
f
∃
w
∈
U
𝒫
A
⊆
w
∧
∀
i
∈
A
∃
v
∈
U
i
∈
v
∧
v
∈
f
→
∃
u
∈
f
i
∈
u
∧
⋃
u
⊆
w