| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ismnu.1 |
|
| 2 |
|
simpr |
|
| 3 |
2
|
pweqd |
|
| 4 |
|
simpl |
|
| 5 |
3 4
|
sseq12d |
|
| 6 |
3
|
3adant3 |
|
| 7 |
6
|
adantr |
|
| 8 |
|
simpr |
|
| 9 |
7 8
|
sseq12d |
|
| 10 |
|
simpl3 |
|
| 11 |
|
simpr |
|
| 12 |
10 11
|
eleq12d |
|
| 13 |
|
simpl13 |
|
| 14 |
11 13
|
eleq12d |
|
| 15 |
12 14
|
anbi12d |
|
| 16 |
|
simpl11 |
|
| 17 |
15 16
|
cbvrexdva2 |
|
| 18 |
|
simpl3 |
|
| 19 |
|
simpr |
|
| 20 |
18 19
|
eleq12d |
|
| 21 |
19
|
unieqd |
|
| 22 |
|
simpl2 |
|
| 23 |
21 22
|
sseq12d |
|
| 24 |
20 23
|
anbi12d |
|
| 25 |
|
simpl13 |
|
| 26 |
24 25
|
cbvrexdva2 |
|
| 27 |
17 26
|
imbi12d |
|
| 28 |
27
|
3expa |
|
| 29 |
|
simpll2 |
|
| 30 |
28 29
|
cbvraldva2 |
|
| 31 |
9 30
|
anbi12d |
|
| 32 |
|
simpl1 |
|
| 33 |
31 32
|
cbvrexdva2 |
|
| 34 |
33
|
3expa |
|
| 35 |
34
|
cbvaldvaw |
|
| 36 |
5 35
|
anbi12d |
|
| 37 |
36 4
|
cbvraldva2 |
|
| 38 |
37 1
|
elab2g |
|