Metamath Proof Explorer


Theorem mnurnd

Description: Minimal universes contain ranges of functions from an element of the universe to the universe. (Contributed by Rohan Ridenour, 13-Aug-2023)

Ref Expression
Hypotheses mnurnd.1 M=k|lk𝒫lkmnk𝒫lnplqkpqqmrmprrn
mnurnd.2 φUM
mnurnd.3 φAU
mnurnd.4 φF:AU
Assertion mnurnd φranFU

Proof

Step Hyp Ref Expression
1 mnurnd.1 M=k|lk𝒫lkmnk𝒫lnplqkpqqmrmprrn
2 mnurnd.2 φUM
3 mnurnd.3 φAU
4 mnurnd.4 φF:AU
5 3 elexd φAV
6 5 iftrued φifAVA=A
7 6 3 eqeltrd φifAVAU
8 6 feq2d φF:ifAVAUF:AU
9 4 8 mpbird φF:ifAVAU
10 0ex V
11 10 elimel ifAVAV
12 1 2 7 9 11 mnurndlem2 φranFU