Metamath Proof Explorer


Theorem mnurnd

Description: Minimal universes contain ranges of functions from an element of the universe to the universe. (Contributed by Rohan Ridenour, 13-Aug-2023)

Ref Expression
Hypotheses mnurnd.1 M = k | l k 𝒫 l k m n k 𝒫 l n p l q k p q q m r m p r r n
mnurnd.2 φ U M
mnurnd.3 φ A U
mnurnd.4 φ F : A U
Assertion mnurnd φ ran F U

Proof

Step Hyp Ref Expression
1 mnurnd.1 M = k | l k 𝒫 l k m n k 𝒫 l n p l q k p q q m r m p r r n
2 mnurnd.2 φ U M
3 mnurnd.3 φ A U
4 mnurnd.4 φ F : A U
5 3 elexd φ A V
6 5 iftrued φ if A V A = A
7 6 3 eqeltrd φ if A V A U
8 6 feq2d φ F : if A V A U F : A U
9 4 8 mpbird φ F : if A V A U
10 0ex V
11 10 elimel if A V A V
12 1 2 7 9 11 mnurndlem2 φ ran F U