Metamath Proof Explorer


Theorem mnurnd

Description: Minimal universes contain ranges of functions from an element of the universe to the universe. (Contributed by Rohan Ridenour, 13-Aug-2023)

Ref Expression
Hypotheses mnurnd.1
|- M = { k | A. l e. k ( ~P l C_ k /\ A. m E. n e. k ( ~P l C_ n /\ A. p e. l ( E. q e. k ( p e. q /\ q e. m ) -> E. r e. m ( p e. r /\ U. r C_ n ) ) ) ) }
mnurnd.2
|- ( ph -> U e. M )
mnurnd.3
|- ( ph -> A e. U )
mnurnd.4
|- ( ph -> F : A --> U )
Assertion mnurnd
|- ( ph -> ran F e. U )

Proof

Step Hyp Ref Expression
1 mnurnd.1
 |-  M = { k | A. l e. k ( ~P l C_ k /\ A. m E. n e. k ( ~P l C_ n /\ A. p e. l ( E. q e. k ( p e. q /\ q e. m ) -> E. r e. m ( p e. r /\ U. r C_ n ) ) ) ) }
2 mnurnd.2
 |-  ( ph -> U e. M )
3 mnurnd.3
 |-  ( ph -> A e. U )
4 mnurnd.4
 |-  ( ph -> F : A --> U )
5 3 elexd
 |-  ( ph -> A e. _V )
6 5 iftrued
 |-  ( ph -> if ( A e. _V , A , (/) ) = A )
7 6 3 eqeltrd
 |-  ( ph -> if ( A e. _V , A , (/) ) e. U )
8 6 feq2d
 |-  ( ph -> ( F : if ( A e. _V , A , (/) ) --> U <-> F : A --> U ) )
9 4 8 mpbird
 |-  ( ph -> F : if ( A e. _V , A , (/) ) --> U )
10 0ex
 |-  (/) e. _V
11 10 elimel
 |-  if ( A e. _V , A , (/) ) e. _V
12 1 2 7 9 11 mnurndlem2
 |-  ( ph -> ran F e. U )