Step |
Hyp |
Ref |
Expression |
1 |
|
mnurnd.1 |
|- M = { k | A. l e. k ( ~P l C_ k /\ A. m E. n e. k ( ~P l C_ n /\ A. p e. l ( E. q e. k ( p e. q /\ q e. m ) -> E. r e. m ( p e. r /\ U. r C_ n ) ) ) ) } |
2 |
|
mnurnd.2 |
|- ( ph -> U e. M ) |
3 |
|
mnurnd.3 |
|- ( ph -> A e. U ) |
4 |
|
mnurnd.4 |
|- ( ph -> F : A --> U ) |
5 |
3
|
elexd |
|- ( ph -> A e. _V ) |
6 |
5
|
iftrued |
|- ( ph -> if ( A e. _V , A , (/) ) = A ) |
7 |
6 3
|
eqeltrd |
|- ( ph -> if ( A e. _V , A , (/) ) e. U ) |
8 |
6
|
feq2d |
|- ( ph -> ( F : if ( A e. _V , A , (/) ) --> U <-> F : A --> U ) ) |
9 |
4 8
|
mpbird |
|- ( ph -> F : if ( A e. _V , A , (/) ) --> U ) |
10 |
|
0ex |
|- (/) e. _V |
11 |
10
|
elimel |
|- if ( A e. _V , A , (/) ) e. _V |
12 |
1 2 7 9 11
|
mnurndlem2 |
|- ( ph -> ran F e. U ) |