| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mnurnd.1 |
⊢ 𝑀 = { 𝑘 ∣ ∀ 𝑙 ∈ 𝑘 ( 𝒫 𝑙 ⊆ 𝑘 ∧ ∀ 𝑚 ∃ 𝑛 ∈ 𝑘 ( 𝒫 𝑙 ⊆ 𝑛 ∧ ∀ 𝑝 ∈ 𝑙 ( ∃ 𝑞 ∈ 𝑘 ( 𝑝 ∈ 𝑞 ∧ 𝑞 ∈ 𝑚 ) → ∃ 𝑟 ∈ 𝑚 ( 𝑝 ∈ 𝑟 ∧ ∪ 𝑟 ⊆ 𝑛 ) ) ) ) } |
| 2 |
|
mnurnd.2 |
⊢ ( 𝜑 → 𝑈 ∈ 𝑀 ) |
| 3 |
|
mnurnd.3 |
⊢ ( 𝜑 → 𝐴 ∈ 𝑈 ) |
| 4 |
|
mnurnd.4 |
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝑈 ) |
| 5 |
3
|
elexd |
⊢ ( 𝜑 → 𝐴 ∈ V ) |
| 6 |
5
|
iftrued |
⊢ ( 𝜑 → if ( 𝐴 ∈ V , 𝐴 , ∅ ) = 𝐴 ) |
| 7 |
6 3
|
eqeltrd |
⊢ ( 𝜑 → if ( 𝐴 ∈ V , 𝐴 , ∅ ) ∈ 𝑈 ) |
| 8 |
6
|
feq2d |
⊢ ( 𝜑 → ( 𝐹 : if ( 𝐴 ∈ V , 𝐴 , ∅ ) ⟶ 𝑈 ↔ 𝐹 : 𝐴 ⟶ 𝑈 ) ) |
| 9 |
4 8
|
mpbird |
⊢ ( 𝜑 → 𝐹 : if ( 𝐴 ∈ V , 𝐴 , ∅ ) ⟶ 𝑈 ) |
| 10 |
|
0ex |
⊢ ∅ ∈ V |
| 11 |
10
|
elimel |
⊢ if ( 𝐴 ∈ V , 𝐴 , ∅ ) ∈ V |
| 12 |
1 2 7 9 11
|
mnurndlem2 |
⊢ ( 𝜑 → ran 𝐹 ∈ 𝑈 ) |