Metamath Proof Explorer


Theorem mnurnd

Description: Minimal universes contain ranges of functions from an element of the universe to the universe. (Contributed by Rohan Ridenour, 13-Aug-2023)

Ref Expression
Hypotheses mnurnd.1 𝑀 = { 𝑘 ∣ ∀ 𝑙𝑘 ( 𝒫 𝑙𝑘 ∧ ∀ 𝑚𝑛𝑘 ( 𝒫 𝑙𝑛 ∧ ∀ 𝑝𝑙 ( ∃ 𝑞𝑘 ( 𝑝𝑞𝑞𝑚 ) → ∃ 𝑟𝑚 ( 𝑝𝑟 𝑟𝑛 ) ) ) ) }
mnurnd.2 ( 𝜑𝑈𝑀 )
mnurnd.3 ( 𝜑𝐴𝑈 )
mnurnd.4 ( 𝜑𝐹 : 𝐴𝑈 )
Assertion mnurnd ( 𝜑 → ran 𝐹𝑈 )

Proof

Step Hyp Ref Expression
1 mnurnd.1 𝑀 = { 𝑘 ∣ ∀ 𝑙𝑘 ( 𝒫 𝑙𝑘 ∧ ∀ 𝑚𝑛𝑘 ( 𝒫 𝑙𝑛 ∧ ∀ 𝑝𝑙 ( ∃ 𝑞𝑘 ( 𝑝𝑞𝑞𝑚 ) → ∃ 𝑟𝑚 ( 𝑝𝑟 𝑟𝑛 ) ) ) ) }
2 mnurnd.2 ( 𝜑𝑈𝑀 )
3 mnurnd.3 ( 𝜑𝐴𝑈 )
4 mnurnd.4 ( 𝜑𝐹 : 𝐴𝑈 )
5 3 elexd ( 𝜑𝐴 ∈ V )
6 5 iftrued ( 𝜑 → if ( 𝐴 ∈ V , 𝐴 , ∅ ) = 𝐴 )
7 6 3 eqeltrd ( 𝜑 → if ( 𝐴 ∈ V , 𝐴 , ∅ ) ∈ 𝑈 )
8 6 feq2d ( 𝜑 → ( 𝐹 : if ( 𝐴 ∈ V , 𝐴 , ∅ ) ⟶ 𝑈𝐹 : 𝐴𝑈 ) )
9 4 8 mpbird ( 𝜑𝐹 : if ( 𝐴 ∈ V , 𝐴 , ∅ ) ⟶ 𝑈 )
10 0ex ∅ ∈ V
11 10 elimel if ( 𝐴 ∈ V , 𝐴 , ∅ ) ∈ V
12 1 2 7 9 11 mnurndlem2 ( 𝜑 → ran 𝐹𝑈 )