| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mnugrud.1 |
⊢ 𝑀 = { 𝑘 ∣ ∀ 𝑙 ∈ 𝑘 ( 𝒫 𝑙 ⊆ 𝑘 ∧ ∀ 𝑚 ∃ 𝑛 ∈ 𝑘 ( 𝒫 𝑙 ⊆ 𝑛 ∧ ∀ 𝑝 ∈ 𝑙 ( ∃ 𝑞 ∈ 𝑘 ( 𝑝 ∈ 𝑞 ∧ 𝑞 ∈ 𝑚 ) → ∃ 𝑟 ∈ 𝑚 ( 𝑝 ∈ 𝑟 ∧ ∪ 𝑟 ⊆ 𝑛 ) ) ) ) } |
| 2 |
|
mnugrud.2 |
⊢ ( 𝜑 → 𝑈 ∈ 𝑀 ) |
| 3 |
1 2
|
mnutrd |
⊢ ( 𝜑 → Tr 𝑈 ) |
| 4 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑈 ) → 𝑈 ∈ 𝑀 ) |
| 5 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑈 ) → 𝑥 ∈ 𝑈 ) |
| 6 |
1 4 5
|
mnupwd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑈 ) → 𝒫 𝑥 ∈ 𝑈 ) |
| 7 |
2
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑈 ) ∧ 𝑦 ∈ 𝑈 ) → 𝑈 ∈ 𝑀 ) |
| 8 |
5
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑈 ) ∧ 𝑦 ∈ 𝑈 ) → 𝑥 ∈ 𝑈 ) |
| 9 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑈 ) ∧ 𝑦 ∈ 𝑈 ) → 𝑦 ∈ 𝑈 ) |
| 10 |
1 7 8 9
|
mnuprd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑈 ) ∧ 𝑦 ∈ 𝑈 ) → { 𝑥 , 𝑦 } ∈ 𝑈 ) |
| 11 |
10
|
ralrimiva |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑈 ) → ∀ 𝑦 ∈ 𝑈 { 𝑥 , 𝑦 } ∈ 𝑈 ) |
| 12 |
2
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑈 ) ∧ 𝑦 ∈ ( 𝑈 ↑m 𝑥 ) ) → 𝑈 ∈ 𝑀 ) |
| 13 |
5
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑈 ) ∧ 𝑦 ∈ ( 𝑈 ↑m 𝑥 ) ) → 𝑥 ∈ 𝑈 ) |
| 14 |
|
elmapi |
⊢ ( 𝑦 ∈ ( 𝑈 ↑m 𝑥 ) → 𝑦 : 𝑥 ⟶ 𝑈 ) |
| 15 |
14
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑈 ) ∧ 𝑦 ∈ ( 𝑈 ↑m 𝑥 ) ) → 𝑦 : 𝑥 ⟶ 𝑈 ) |
| 16 |
1 12 13 15
|
mnurnd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑈 ) ∧ 𝑦 ∈ ( 𝑈 ↑m 𝑥 ) ) → ran 𝑦 ∈ 𝑈 ) |
| 17 |
1 12 16
|
mnuunid |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑈 ) ∧ 𝑦 ∈ ( 𝑈 ↑m 𝑥 ) ) → ∪ ran 𝑦 ∈ 𝑈 ) |
| 18 |
17
|
ralrimiva |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑈 ) → ∀ 𝑦 ∈ ( 𝑈 ↑m 𝑥 ) ∪ ran 𝑦 ∈ 𝑈 ) |
| 19 |
6 11 18
|
3jca |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑈 ) → ( 𝒫 𝑥 ∈ 𝑈 ∧ ∀ 𝑦 ∈ 𝑈 { 𝑥 , 𝑦 } ∈ 𝑈 ∧ ∀ 𝑦 ∈ ( 𝑈 ↑m 𝑥 ) ∪ ran 𝑦 ∈ 𝑈 ) ) |
| 20 |
19
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑈 ( 𝒫 𝑥 ∈ 𝑈 ∧ ∀ 𝑦 ∈ 𝑈 { 𝑥 , 𝑦 } ∈ 𝑈 ∧ ∀ 𝑦 ∈ ( 𝑈 ↑m 𝑥 ) ∪ ran 𝑦 ∈ 𝑈 ) ) |
| 21 |
|
elgrug |
⊢ ( 𝑈 ∈ 𝑀 → ( 𝑈 ∈ Univ ↔ ( Tr 𝑈 ∧ ∀ 𝑥 ∈ 𝑈 ( 𝒫 𝑥 ∈ 𝑈 ∧ ∀ 𝑦 ∈ 𝑈 { 𝑥 , 𝑦 } ∈ 𝑈 ∧ ∀ 𝑦 ∈ ( 𝑈 ↑m 𝑥 ) ∪ ran 𝑦 ∈ 𝑈 ) ) ) ) |
| 22 |
2 21
|
syl |
⊢ ( 𝜑 → ( 𝑈 ∈ Univ ↔ ( Tr 𝑈 ∧ ∀ 𝑥 ∈ 𝑈 ( 𝒫 𝑥 ∈ 𝑈 ∧ ∀ 𝑦 ∈ 𝑈 { 𝑥 , 𝑦 } ∈ 𝑈 ∧ ∀ 𝑦 ∈ ( 𝑈 ↑m 𝑥 ) ∪ ran 𝑦 ∈ 𝑈 ) ) ) ) |
| 23 |
3 20 22
|
mpbir2and |
⊢ ( 𝜑 → 𝑈 ∈ Univ ) |