Metamath Proof Explorer


Theorem grumnudlem

Description: Lemma for grumnud . (Contributed by Rohan Ridenour, 13-Aug-2023)

Ref Expression
Hypotheses grumnudlem.1 𝑀 = { 𝑘 ∣ ∀ 𝑙𝑘 ( 𝒫 𝑙𝑘 ∧ ∀ 𝑚𝑛𝑘 ( 𝒫 𝑙𝑛 ∧ ∀ 𝑝𝑙 ( ∃ 𝑞𝑘 ( 𝑝𝑞𝑞𝑚 ) → ∃ 𝑟𝑚 ( 𝑝𝑟 𝑟𝑛 ) ) ) ) }
grumnudlem.2 ( 𝜑𝐺 ∈ Univ )
grumnudlem.3 𝐹 = ( { ⟨ 𝑏 , 𝑐 ⟩ ∣ ∃ 𝑑 ( 𝑑 = 𝑐𝑑𝑓𝑏𝑑 ) } ∩ ( 𝐺 × 𝐺 ) )
grumnudlem.4 ( ( 𝑖𝐺𝐺 ) → ( 𝑖 𝐹 ↔ ∃ 𝑗 ( 𝑗 = 𝑗𝑓𝑖𝑗 ) ) )
grumnudlem.5 ( ( ∈ ( 𝐹 Coll 𝑧 ) ∧ ( 𝑗 = 𝑗𝑓𝑖𝑗 ) ) → ∃ 𝑢𝑓 ( 𝑖𝑢 𝑢 ∈ ( 𝐹 Coll 𝑧 ) ) )
Assertion grumnudlem ( 𝜑𝐺𝑀 )

Proof

Step Hyp Ref Expression
1 grumnudlem.1 𝑀 = { 𝑘 ∣ ∀ 𝑙𝑘 ( 𝒫 𝑙𝑘 ∧ ∀ 𝑚𝑛𝑘 ( 𝒫 𝑙𝑛 ∧ ∀ 𝑝𝑙 ( ∃ 𝑞𝑘 ( 𝑝𝑞𝑞𝑚 ) → ∃ 𝑟𝑚 ( 𝑝𝑟 𝑟𝑛 ) ) ) ) }
2 grumnudlem.2 ( 𝜑𝐺 ∈ Univ )
3 grumnudlem.3 𝐹 = ( { ⟨ 𝑏 , 𝑐 ⟩ ∣ ∃ 𝑑 ( 𝑑 = 𝑐𝑑𝑓𝑏𝑑 ) } ∩ ( 𝐺 × 𝐺 ) )
4 grumnudlem.4 ( ( 𝑖𝐺𝐺 ) → ( 𝑖 𝐹 ↔ ∃ 𝑗 ( 𝑗 = 𝑗𝑓𝑖𝑗 ) ) )
5 grumnudlem.5 ( ( ∈ ( 𝐹 Coll 𝑧 ) ∧ ( 𝑗 = 𝑗𝑓𝑖𝑗 ) ) → ∃ 𝑢𝑓 ( 𝑖𝑢 𝑢 ∈ ( 𝐹 Coll 𝑧 ) ) )
6 gruss ( ( 𝐺 ∈ Univ ∧ 𝑧𝐺𝑎𝑧 ) → 𝑎𝐺 )
7 2 6 syl3an1 ( ( 𝜑𝑧𝐺𝑎𝑧 ) → 𝑎𝐺 )
8 7 3expia ( ( 𝜑𝑧𝐺 ) → ( 𝑎𝑧𝑎𝐺 ) )
9 8 alrimiv ( ( 𝜑𝑧𝐺 ) → ∀ 𝑎 ( 𝑎𝑧𝑎𝐺 ) )
10 pwss ( 𝒫 𝑧𝐺 ↔ ∀ 𝑎 ( 𝑎𝑧𝑎𝐺 ) )
11 9 10 sylibr ( ( 𝜑𝑧𝐺 ) → 𝒫 𝑧𝐺 )
12 ssun1 𝒫 𝑧 ⊆ ( 𝒫 𝑧 ( 𝐹 Coll 𝑧 ) )
13 simp3 ( ( 𝜑𝑧𝐺𝑤 = ( 𝒫 𝑧 ( 𝐹 Coll 𝑧 ) ) ) → 𝑤 = ( 𝒫 𝑧 ( 𝐹 Coll 𝑧 ) ) )
14 12 13 sseqtrrid ( ( 𝜑𝑧𝐺𝑤 = ( 𝒫 𝑧 ( 𝐹 Coll 𝑧 ) ) ) → 𝒫 𝑧𝑤 )
15 simp1l3 ( ( ( ( 𝜑𝑧𝐺𝑤 = ( 𝒫 𝑧 ( 𝐹 Coll 𝑧 ) ) ) ∧ 𝑖𝑧 ) ∧ 𝑣𝐺 ∧ ( 𝑖𝑣𝑣𝑓 ) ) → 𝑤 = ( 𝒫 𝑧 ( 𝐹 Coll 𝑧 ) ) )
16 simp1r ( ( ( ( 𝜑𝑧𝐺𝑤 = ( 𝒫 𝑧 ( 𝐹 Coll 𝑧 ) ) ) ∧ 𝑖𝑧 ) ∧ 𝑣𝐺 ∧ ( 𝑖𝑣𝑣𝑓 ) ) → 𝑖𝑧 )
17 simpr ( ( = 𝑣𝑗 = 𝑣 ) → 𝑗 = 𝑣 )
18 17 unieqd ( ( = 𝑣𝑗 = 𝑣 ) → 𝑗 = 𝑣 )
19 simpl ( ( = 𝑣𝑗 = 𝑣 ) → = 𝑣 )
20 18 19 eqtr4d ( ( = 𝑣𝑗 = 𝑣 ) → 𝑗 = )
21 20 adantll ( ( ( ( ( ( 𝜑𝑧𝐺𝑤 = ( 𝒫 𝑧 ( 𝐹 Coll 𝑧 ) ) ) ∧ 𝑖𝑧 ) ∧ 𝑣𝐺 ∧ ( 𝑖𝑣𝑣𝑓 ) ) ∧ = 𝑣 ) ∧ 𝑗 = 𝑣 ) → 𝑗 = )
22 simpr ( ( ( ( ( ( 𝜑𝑧𝐺𝑤 = ( 𝒫 𝑧 ( 𝐹 Coll 𝑧 ) ) ) ∧ 𝑖𝑧 ) ∧ 𝑣𝐺 ∧ ( 𝑖𝑣𝑣𝑓 ) ) ∧ = 𝑣 ) ∧ 𝑗 = 𝑣 ) → 𝑗 = 𝑣 )
23 simpll3 ( ( ( ( ( ( 𝜑𝑧𝐺𝑤 = ( 𝒫 𝑧 ( 𝐹 Coll 𝑧 ) ) ) ∧ 𝑖𝑧 ) ∧ 𝑣𝐺 ∧ ( 𝑖𝑣𝑣𝑓 ) ) ∧ = 𝑣 ) ∧ 𝑗 = 𝑣 ) → ( 𝑖𝑣𝑣𝑓 ) )
24 23 simprd ( ( ( ( ( ( 𝜑𝑧𝐺𝑤 = ( 𝒫 𝑧 ( 𝐹 Coll 𝑧 ) ) ) ∧ 𝑖𝑧 ) ∧ 𝑣𝐺 ∧ ( 𝑖𝑣𝑣𝑓 ) ) ∧ = 𝑣 ) ∧ 𝑗 = 𝑣 ) → 𝑣𝑓 )
25 22 24 eqeltrd ( ( ( ( ( ( 𝜑𝑧𝐺𝑤 = ( 𝒫 𝑧 ( 𝐹 Coll 𝑧 ) ) ) ∧ 𝑖𝑧 ) ∧ 𝑣𝐺 ∧ ( 𝑖𝑣𝑣𝑓 ) ) ∧ = 𝑣 ) ∧ 𝑗 = 𝑣 ) → 𝑗𝑓 )
26 23 simpld ( ( ( ( ( ( 𝜑𝑧𝐺𝑤 = ( 𝒫 𝑧 ( 𝐹 Coll 𝑧 ) ) ) ∧ 𝑖𝑧 ) ∧ 𝑣𝐺 ∧ ( 𝑖𝑣𝑣𝑓 ) ) ∧ = 𝑣 ) ∧ 𝑗 = 𝑣 ) → 𝑖𝑣 )
27 26 22 eleqtrrd ( ( ( ( ( ( 𝜑𝑧𝐺𝑤 = ( 𝒫 𝑧 ( 𝐹 Coll 𝑧 ) ) ) ∧ 𝑖𝑧 ) ∧ 𝑣𝐺 ∧ ( 𝑖𝑣𝑣𝑓 ) ) ∧ = 𝑣 ) ∧ 𝑗 = 𝑣 ) → 𝑖𝑗 )
28 21 25 27 3jca ( ( ( ( ( ( 𝜑𝑧𝐺𝑤 = ( 𝒫 𝑧 ( 𝐹 Coll 𝑧 ) ) ) ∧ 𝑖𝑧 ) ∧ 𝑣𝐺 ∧ ( 𝑖𝑣𝑣𝑓 ) ) ∧ = 𝑣 ) ∧ 𝑗 = 𝑣 ) → ( 𝑗 = 𝑗𝑓𝑖𝑗 ) )
29 simpl2 ( ( ( ( ( 𝜑𝑧𝐺𝑤 = ( 𝒫 𝑧 ( 𝐹 Coll 𝑧 ) ) ) ∧ 𝑖𝑧 ) ∧ 𝑣𝐺 ∧ ( 𝑖𝑣𝑣𝑓 ) ) ∧ = 𝑣 ) → 𝑣𝐺 )
30 28 29 rr-spce ( ( ( ( ( 𝜑𝑧𝐺𝑤 = ( 𝒫 𝑧 ( 𝐹 Coll 𝑧 ) ) ) ∧ 𝑖𝑧 ) ∧ 𝑣𝐺 ∧ ( 𝑖𝑣𝑣𝑓 ) ) ∧ = 𝑣 ) → ∃ 𝑗 ( 𝑗 = 𝑗𝑓𝑖𝑗 ) )
31 simp1l1 ( ( ( ( 𝜑𝑧𝐺𝑤 = ( 𝒫 𝑧 ( 𝐹 Coll 𝑧 ) ) ) ∧ 𝑖𝑧 ) ∧ 𝑣𝐺 ∧ ( 𝑖𝑣𝑣𝑓 ) ) → 𝜑 )
32 31 2 syl ( ( ( ( 𝜑𝑧𝐺𝑤 = ( 𝒫 𝑧 ( 𝐹 Coll 𝑧 ) ) ) ∧ 𝑖𝑧 ) ∧ 𝑣𝐺 ∧ ( 𝑖𝑣𝑣𝑓 ) ) → 𝐺 ∈ Univ )
33 simp2 ( ( ( ( 𝜑𝑧𝐺𝑤 = ( 𝒫 𝑧 ( 𝐹 Coll 𝑧 ) ) ) ∧ 𝑖𝑧 ) ∧ 𝑣𝐺 ∧ ( 𝑖𝑣𝑣𝑓 ) ) → 𝑣𝐺 )
34 gruuni ( ( 𝐺 ∈ Univ ∧ 𝑣𝐺 ) → 𝑣𝐺 )
35 32 33 34 syl2anc ( ( ( ( 𝜑𝑧𝐺𝑤 = ( 𝒫 𝑧 ( 𝐹 Coll 𝑧 ) ) ) ∧ 𝑖𝑧 ) ∧ 𝑣𝐺 ∧ ( 𝑖𝑣𝑣𝑓 ) ) → 𝑣𝐺 )
36 30 35 rspcime ( ( ( ( 𝜑𝑧𝐺𝑤 = ( 𝒫 𝑧 ( 𝐹 Coll 𝑧 ) ) ) ∧ 𝑖𝑧 ) ∧ 𝑣𝐺 ∧ ( 𝑖𝑣𝑣𝑓 ) ) → ∃ 𝐺𝑗 ( 𝑗 = 𝑗𝑓𝑖𝑗 ) )
37 simpl1 ( ( ( 𝜑𝑧𝐺𝑤 = ( 𝒫 𝑧 ( 𝐹 Coll 𝑧 ) ) ) ∧ 𝑖𝑧 ) → 𝜑 )
38 37 2 syl ( ( ( 𝜑𝑧𝐺𝑤 = ( 𝒫 𝑧 ( 𝐹 Coll 𝑧 ) ) ) ∧ 𝑖𝑧 ) → 𝐺 ∈ Univ )
39 simpl2 ( ( ( 𝜑𝑧𝐺𝑤 = ( 𝒫 𝑧 ( 𝐹 Coll 𝑧 ) ) ) ∧ 𝑖𝑧 ) → 𝑧𝐺 )
40 simpr ( ( ( 𝜑𝑧𝐺𝑤 = ( 𝒫 𝑧 ( 𝐹 Coll 𝑧 ) ) ) ∧ 𝑖𝑧 ) → 𝑖𝑧 )
41 gruel ( ( 𝐺 ∈ Univ ∧ 𝑧𝐺𝑖𝑧 ) → 𝑖𝐺 )
42 38 39 40 41 syl3anc ( ( ( 𝜑𝑧𝐺𝑤 = ( 𝒫 𝑧 ( 𝐹 Coll 𝑧 ) ) ) ∧ 𝑖𝑧 ) → 𝑖𝐺 )
43 42 3ad2ant1 ( ( ( ( 𝜑𝑧𝐺𝑤 = ( 𝒫 𝑧 ( 𝐹 Coll 𝑧 ) ) ) ∧ 𝑖𝑧 ) ∧ 𝑣𝐺 ∧ ( 𝑖𝑣𝑣𝑓 ) ) → 𝑖𝐺 )
44 43 4 sylan ( ( ( ( ( 𝜑𝑧𝐺𝑤 = ( 𝒫 𝑧 ( 𝐹 Coll 𝑧 ) ) ) ∧ 𝑖𝑧 ) ∧ 𝑣𝐺 ∧ ( 𝑖𝑣𝑣𝑓 ) ) ∧ 𝐺 ) → ( 𝑖 𝐹 ↔ ∃ 𝑗 ( 𝑗 = 𝑗𝑓𝑖𝑗 ) ) )
45 44 rexbidva ( ( ( ( 𝜑𝑧𝐺𝑤 = ( 𝒫 𝑧 ( 𝐹 Coll 𝑧 ) ) ) ∧ 𝑖𝑧 ) ∧ 𝑣𝐺 ∧ ( 𝑖𝑣𝑣𝑓 ) ) → ( ∃ 𝐺 𝑖 𝐹 ↔ ∃ 𝐺𝑗 ( 𝑗 = 𝑗𝑓𝑖𝑗 ) ) )
46 36 45 mpbird ( ( ( ( 𝜑𝑧𝐺𝑤 = ( 𝒫 𝑧 ( 𝐹 Coll 𝑧 ) ) ) ∧ 𝑖𝑧 ) ∧ 𝑣𝐺 ∧ ( 𝑖𝑣𝑣𝑓 ) ) → ∃ 𝐺 𝑖 𝐹 )
47 rexex ( ∃ 𝐺 𝑖 𝐹 → ∃ 𝑖 𝐹 )
48 46 47 syl ( ( ( ( 𝜑𝑧𝐺𝑤 = ( 𝒫 𝑧 ( 𝐹 Coll 𝑧 ) ) ) ∧ 𝑖𝑧 ) ∧ 𝑣𝐺 ∧ ( 𝑖𝑣𝑣𝑓 ) ) → ∃ 𝑖 𝐹 )
49 16 48 cpcoll2d ( ( ( ( 𝜑𝑧𝐺𝑤 = ( 𝒫 𝑧 ( 𝐹 Coll 𝑧 ) ) ) ∧ 𝑖𝑧 ) ∧ 𝑣𝐺 ∧ ( 𝑖𝑣𝑣𝑓 ) ) → ∃ ∈ ( 𝐹 Coll 𝑧 ) 𝑖 𝐹 )
50 32 adantr ( ( ( ( ( 𝜑𝑧𝐺𝑤 = ( 𝒫 𝑧 ( 𝐹 Coll 𝑧 ) ) ) ∧ 𝑖𝑧 ) ∧ 𝑣𝐺 ∧ ( 𝑖𝑣𝑣𝑓 ) ) ∧ ∈ ( 𝐹 Coll 𝑧 ) ) → 𝐺 ∈ Univ )
51 39 3ad2ant1 ( ( ( ( 𝜑𝑧𝐺𝑤 = ( 𝒫 𝑧 ( 𝐹 Coll 𝑧 ) ) ) ∧ 𝑖𝑧 ) ∧ 𝑣𝐺 ∧ ( 𝑖𝑣𝑣𝑓 ) ) → 𝑧𝐺 )
52 51 adantr ( ( ( ( ( 𝜑𝑧𝐺𝑤 = ( 𝒫 𝑧 ( 𝐹 Coll 𝑧 ) ) ) ∧ 𝑖𝑧 ) ∧ 𝑣𝐺 ∧ ( 𝑖𝑣𝑣𝑓 ) ) ∧ ∈ ( 𝐹 Coll 𝑧 ) ) → 𝑧𝐺 )
53 2 adantr ( ( 𝜑𝑧𝐺 ) → 𝐺 ∈ Univ )
54 inss2 ( { ⟨ 𝑏 , 𝑐 ⟩ ∣ ∃ 𝑑 ( 𝑑 = 𝑐𝑑𝑓𝑏𝑑 ) } ∩ ( 𝐺 × 𝐺 ) ) ⊆ ( 𝐺 × 𝐺 )
55 3 54 eqsstri 𝐹 ⊆ ( 𝐺 × 𝐺 )
56 55 a1i ( ( 𝜑𝑧𝐺 ) → 𝐹 ⊆ ( 𝐺 × 𝐺 ) )
57 simpr ( ( 𝜑𝑧𝐺 ) → 𝑧𝐺 )
58 53 56 57 grucollcld ( ( 𝜑𝑧𝐺 ) → ( 𝐹 Coll 𝑧 ) ∈ 𝐺 )
59 31 52 58 syl2an2r ( ( ( ( ( 𝜑𝑧𝐺𝑤 = ( 𝒫 𝑧 ( 𝐹 Coll 𝑧 ) ) ) ∧ 𝑖𝑧 ) ∧ 𝑣𝐺 ∧ ( 𝑖𝑣𝑣𝑓 ) ) ∧ ∈ ( 𝐹 Coll 𝑧 ) ) → ( 𝐹 Coll 𝑧 ) ∈ 𝐺 )
60 simpr ( ( ( ( ( 𝜑𝑧𝐺𝑤 = ( 𝒫 𝑧 ( 𝐹 Coll 𝑧 ) ) ) ∧ 𝑖𝑧 ) ∧ 𝑣𝐺 ∧ ( 𝑖𝑣𝑣𝑓 ) ) ∧ ∈ ( 𝐹 Coll 𝑧 ) ) → ∈ ( 𝐹 Coll 𝑧 ) )
61 gruel ( ( 𝐺 ∈ Univ ∧ ( 𝐹 Coll 𝑧 ) ∈ 𝐺 ∈ ( 𝐹 Coll 𝑧 ) ) → 𝐺 )
62 50 59 60 61 syl3anc ( ( ( ( ( 𝜑𝑧𝐺𝑤 = ( 𝒫 𝑧 ( 𝐹 Coll 𝑧 ) ) ) ∧ 𝑖𝑧 ) ∧ 𝑣𝐺 ∧ ( 𝑖𝑣𝑣𝑓 ) ) ∧ ∈ ( 𝐹 Coll 𝑧 ) ) → 𝐺 )
63 43 62 4 syl2an2r ( ( ( ( ( 𝜑𝑧𝐺𝑤 = ( 𝒫 𝑧 ( 𝐹 Coll 𝑧 ) ) ) ∧ 𝑖𝑧 ) ∧ 𝑣𝐺 ∧ ( 𝑖𝑣𝑣𝑓 ) ) ∧ ∈ ( 𝐹 Coll 𝑧 ) ) → ( 𝑖 𝐹 ↔ ∃ 𝑗 ( 𝑗 = 𝑗𝑓𝑖𝑗 ) ) )
64 63 rexbidva ( ( ( ( 𝜑𝑧𝐺𝑤 = ( 𝒫 𝑧 ( 𝐹 Coll 𝑧 ) ) ) ∧ 𝑖𝑧 ) ∧ 𝑣𝐺 ∧ ( 𝑖𝑣𝑣𝑓 ) ) → ( ∃ ∈ ( 𝐹 Coll 𝑧 ) 𝑖 𝐹 ↔ ∃ ∈ ( 𝐹 Coll 𝑧 ) ∃ 𝑗 ( 𝑗 = 𝑗𝑓𝑖𝑗 ) ) )
65 49 64 mpbid ( ( ( ( 𝜑𝑧𝐺𝑤 = ( 𝒫 𝑧 ( 𝐹 Coll 𝑧 ) ) ) ∧ 𝑖𝑧 ) ∧ 𝑣𝐺 ∧ ( 𝑖𝑣𝑣𝑓 ) ) → ∃ ∈ ( 𝐹 Coll 𝑧 ) ∃ 𝑗 ( 𝑗 = 𝑗𝑓𝑖𝑗 ) )
66 rexcom4 ( ∃ ∈ ( 𝐹 Coll 𝑧 ) ∃ 𝑗 ( 𝑗 = 𝑗𝑓𝑖𝑗 ) ↔ ∃ 𝑗 ∈ ( 𝐹 Coll 𝑧 ) ( 𝑗 = 𝑗𝑓𝑖𝑗 ) )
67 5 rexlimiva ( ∃ ∈ ( 𝐹 Coll 𝑧 ) ( 𝑗 = 𝑗𝑓𝑖𝑗 ) → ∃ 𝑢𝑓 ( 𝑖𝑢 𝑢 ∈ ( 𝐹 Coll 𝑧 ) ) )
68 67 exlimiv ( ∃ 𝑗 ∈ ( 𝐹 Coll 𝑧 ) ( 𝑗 = 𝑗𝑓𝑖𝑗 ) → ∃ 𝑢𝑓 ( 𝑖𝑢 𝑢 ∈ ( 𝐹 Coll 𝑧 ) ) )
69 66 68 sylbi ( ∃ ∈ ( 𝐹 Coll 𝑧 ) ∃ 𝑗 ( 𝑗 = 𝑗𝑓𝑖𝑗 ) → ∃ 𝑢𝑓 ( 𝑖𝑢 𝑢 ∈ ( 𝐹 Coll 𝑧 ) ) )
70 65 69 syl ( ( ( ( 𝜑𝑧𝐺𝑤 = ( 𝒫 𝑧 ( 𝐹 Coll 𝑧 ) ) ) ∧ 𝑖𝑧 ) ∧ 𝑣𝐺 ∧ ( 𝑖𝑣𝑣𝑓 ) ) → ∃ 𝑢𝑓 ( 𝑖𝑢 𝑢 ∈ ( 𝐹 Coll 𝑧 ) ) )
71 elssuni ( 𝑢 ∈ ( 𝐹 Coll 𝑧 ) → 𝑢 ( 𝐹 Coll 𝑧 ) )
72 ssun2 ( 𝐹 Coll 𝑧 ) ⊆ ( 𝒫 𝑧 ( 𝐹 Coll 𝑧 ) )
73 71 72 sstrdi ( 𝑢 ∈ ( 𝐹 Coll 𝑧 ) → 𝑢 ⊆ ( 𝒫 𝑧 ( 𝐹 Coll 𝑧 ) ) )
74 73 adantl ( ( 𝑤 = ( 𝒫 𝑧 ( 𝐹 Coll 𝑧 ) ) ∧ 𝑢 ∈ ( 𝐹 Coll 𝑧 ) ) → 𝑢 ⊆ ( 𝒫 𝑧 ( 𝐹 Coll 𝑧 ) ) )
75 simpl ( ( 𝑤 = ( 𝒫 𝑧 ( 𝐹 Coll 𝑧 ) ) ∧ 𝑢 ∈ ( 𝐹 Coll 𝑧 ) ) → 𝑤 = ( 𝒫 𝑧 ( 𝐹 Coll 𝑧 ) ) )
76 74 75 sseqtrrd ( ( 𝑤 = ( 𝒫 𝑧 ( 𝐹 Coll 𝑧 ) ) ∧ 𝑢 ∈ ( 𝐹 Coll 𝑧 ) ) → 𝑢𝑤 )
77 76 ex ( 𝑤 = ( 𝒫 𝑧 ( 𝐹 Coll 𝑧 ) ) → ( 𝑢 ∈ ( 𝐹 Coll 𝑧 ) → 𝑢𝑤 ) )
78 77 anim2d ( 𝑤 = ( 𝒫 𝑧 ( 𝐹 Coll 𝑧 ) ) → ( ( 𝑖𝑢 𝑢 ∈ ( 𝐹 Coll 𝑧 ) ) → ( 𝑖𝑢 𝑢𝑤 ) ) )
79 78 reximdv ( 𝑤 = ( 𝒫 𝑧 ( 𝐹 Coll 𝑧 ) ) → ( ∃ 𝑢𝑓 ( 𝑖𝑢 𝑢 ∈ ( 𝐹 Coll 𝑧 ) ) → ∃ 𝑢𝑓 ( 𝑖𝑢 𝑢𝑤 ) ) )
80 15 70 79 sylc ( ( ( ( 𝜑𝑧𝐺𝑤 = ( 𝒫 𝑧 ( 𝐹 Coll 𝑧 ) ) ) ∧ 𝑖𝑧 ) ∧ 𝑣𝐺 ∧ ( 𝑖𝑣𝑣𝑓 ) ) → ∃ 𝑢𝑓 ( 𝑖𝑢 𝑢𝑤 ) )
81 80 rexlimdv3a ( ( ( 𝜑𝑧𝐺𝑤 = ( 𝒫 𝑧 ( 𝐹 Coll 𝑧 ) ) ) ∧ 𝑖𝑧 ) → ( ∃ 𝑣𝐺 ( 𝑖𝑣𝑣𝑓 ) → ∃ 𝑢𝑓 ( 𝑖𝑢 𝑢𝑤 ) ) )
82 81 ralrimiva ( ( 𝜑𝑧𝐺𝑤 = ( 𝒫 𝑧 ( 𝐹 Coll 𝑧 ) ) ) → ∀ 𝑖𝑧 ( ∃ 𝑣𝐺 ( 𝑖𝑣𝑣𝑓 ) → ∃ 𝑢𝑓 ( 𝑖𝑢 𝑢𝑤 ) ) )
83 14 82 jca ( ( 𝜑𝑧𝐺𝑤 = ( 𝒫 𝑧 ( 𝐹 Coll 𝑧 ) ) ) → ( 𝒫 𝑧𝑤 ∧ ∀ 𝑖𝑧 ( ∃ 𝑣𝐺 ( 𝑖𝑣𝑣𝑓 ) → ∃ 𝑢𝑓 ( 𝑖𝑢 𝑢𝑤 ) ) ) )
84 83 3expa ( ( ( 𝜑𝑧𝐺 ) ∧ 𝑤 = ( 𝒫 𝑧 ( 𝐹 Coll 𝑧 ) ) ) → ( 𝒫 𝑧𝑤 ∧ ∀ 𝑖𝑧 ( ∃ 𝑣𝐺 ( 𝑖𝑣𝑣𝑓 ) → ∃ 𝑢𝑓 ( 𝑖𝑢 𝑢𝑤 ) ) ) )
85 grupw ( ( 𝐺 ∈ Univ ∧ 𝑧𝐺 ) → 𝒫 𝑧𝐺 )
86 2 85 sylan ( ( 𝜑𝑧𝐺 ) → 𝒫 𝑧𝐺 )
87 gruuni ( ( 𝐺 ∈ Univ ∧ ( 𝐹 Coll 𝑧 ) ∈ 𝐺 ) → ( 𝐹 Coll 𝑧 ) ∈ 𝐺 )
88 2 58 87 syl2an2r ( ( 𝜑𝑧𝐺 ) → ( 𝐹 Coll 𝑧 ) ∈ 𝐺 )
89 gruun ( ( 𝐺 ∈ Univ ∧ 𝒫 𝑧𝐺 ( 𝐹 Coll 𝑧 ) ∈ 𝐺 ) → ( 𝒫 𝑧 ( 𝐹 Coll 𝑧 ) ) ∈ 𝐺 )
90 53 86 88 89 syl3anc ( ( 𝜑𝑧𝐺 ) → ( 𝒫 𝑧 ( 𝐹 Coll 𝑧 ) ) ∈ 𝐺 )
91 84 90 rspcime ( ( 𝜑𝑧𝐺 ) → ∃ 𝑤𝐺 ( 𝒫 𝑧𝑤 ∧ ∀ 𝑖𝑧 ( ∃ 𝑣𝐺 ( 𝑖𝑣𝑣𝑓 ) → ∃ 𝑢𝑓 ( 𝑖𝑢 𝑢𝑤 ) ) ) )
92 91 alrimiv ( ( 𝜑𝑧𝐺 ) → ∀ 𝑓𝑤𝐺 ( 𝒫 𝑧𝑤 ∧ ∀ 𝑖𝑧 ( ∃ 𝑣𝐺 ( 𝑖𝑣𝑣𝑓 ) → ∃ 𝑢𝑓 ( 𝑖𝑢 𝑢𝑤 ) ) ) )
93 11 92 jca ( ( 𝜑𝑧𝐺 ) → ( 𝒫 𝑧𝐺 ∧ ∀ 𝑓𝑤𝐺 ( 𝒫 𝑧𝑤 ∧ ∀ 𝑖𝑧 ( ∃ 𝑣𝐺 ( 𝑖𝑣𝑣𝑓 ) → ∃ 𝑢𝑓 ( 𝑖𝑢 𝑢𝑤 ) ) ) ) )
94 93 ralrimiva ( 𝜑 → ∀ 𝑧𝐺 ( 𝒫 𝑧𝐺 ∧ ∀ 𝑓𝑤𝐺 ( 𝒫 𝑧𝑤 ∧ ∀ 𝑖𝑧 ( ∃ 𝑣𝐺 ( 𝑖𝑣𝑣𝑓 ) → ∃ 𝑢𝑓 ( 𝑖𝑢 𝑢𝑤 ) ) ) ) )
95 1 ismnu ( 𝐺 ∈ Univ → ( 𝐺𝑀 ↔ ∀ 𝑧𝐺 ( 𝒫 𝑧𝐺 ∧ ∀ 𝑓𝑤𝐺 ( 𝒫 𝑧𝑤 ∧ ∀ 𝑖𝑧 ( ∃ 𝑣𝐺 ( 𝑖𝑣𝑣𝑓 ) → ∃ 𝑢𝑓 ( 𝑖𝑢 𝑢𝑤 ) ) ) ) ) )
96 2 95 syl ( 𝜑 → ( 𝐺𝑀 ↔ ∀ 𝑧𝐺 ( 𝒫 𝑧𝐺 ∧ ∀ 𝑓𝑤𝐺 ( 𝒫 𝑧𝑤 ∧ ∀ 𝑖𝑧 ( ∃ 𝑣𝐺 ( 𝑖𝑣𝑣𝑓 ) → ∃ 𝑢𝑓 ( 𝑖𝑢 𝑢𝑤 ) ) ) ) ) )
97 94 96 mpbird ( 𝜑𝐺𝑀 )