Step |
Hyp |
Ref |
Expression |
1 |
|
grumnudlem.1 |
⊢ 𝑀 = { 𝑘 ∣ ∀ 𝑙 ∈ 𝑘 ( 𝒫 𝑙 ⊆ 𝑘 ∧ ∀ 𝑚 ∃ 𝑛 ∈ 𝑘 ( 𝒫 𝑙 ⊆ 𝑛 ∧ ∀ 𝑝 ∈ 𝑙 ( ∃ 𝑞 ∈ 𝑘 ( 𝑝 ∈ 𝑞 ∧ 𝑞 ∈ 𝑚 ) → ∃ 𝑟 ∈ 𝑚 ( 𝑝 ∈ 𝑟 ∧ ∪ 𝑟 ⊆ 𝑛 ) ) ) ) } |
2 |
|
grumnudlem.2 |
⊢ ( 𝜑 → 𝐺 ∈ Univ ) |
3 |
|
grumnudlem.3 |
⊢ 𝐹 = ( { 〈 𝑏 , 𝑐 〉 ∣ ∃ 𝑑 ( ∪ 𝑑 = 𝑐 ∧ 𝑑 ∈ 𝑓 ∧ 𝑏 ∈ 𝑑 ) } ∩ ( 𝐺 × 𝐺 ) ) |
4 |
|
grumnudlem.4 |
⊢ ( ( 𝑖 ∈ 𝐺 ∧ ℎ ∈ 𝐺 ) → ( 𝑖 𝐹 ℎ ↔ ∃ 𝑗 ( ∪ 𝑗 = ℎ ∧ 𝑗 ∈ 𝑓 ∧ 𝑖 ∈ 𝑗 ) ) ) |
5 |
|
grumnudlem.5 |
⊢ ( ( ℎ ∈ ( 𝐹 Coll 𝑧 ) ∧ ( ∪ 𝑗 = ℎ ∧ 𝑗 ∈ 𝑓 ∧ 𝑖 ∈ 𝑗 ) ) → ∃ 𝑢 ∈ 𝑓 ( 𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ∈ ( 𝐹 Coll 𝑧 ) ) ) |
6 |
|
gruss |
⊢ ( ( 𝐺 ∈ Univ ∧ 𝑧 ∈ 𝐺 ∧ 𝑎 ⊆ 𝑧 ) → 𝑎 ∈ 𝐺 ) |
7 |
2 6
|
syl3an1 |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐺 ∧ 𝑎 ⊆ 𝑧 ) → 𝑎 ∈ 𝐺 ) |
8 |
7
|
3expia |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐺 ) → ( 𝑎 ⊆ 𝑧 → 𝑎 ∈ 𝐺 ) ) |
9 |
8
|
alrimiv |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐺 ) → ∀ 𝑎 ( 𝑎 ⊆ 𝑧 → 𝑎 ∈ 𝐺 ) ) |
10 |
|
pwss |
⊢ ( 𝒫 𝑧 ⊆ 𝐺 ↔ ∀ 𝑎 ( 𝑎 ⊆ 𝑧 → 𝑎 ∈ 𝐺 ) ) |
11 |
9 10
|
sylibr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐺 ) → 𝒫 𝑧 ⊆ 𝐺 ) |
12 |
|
ssun1 |
⊢ 𝒫 𝑧 ⊆ ( 𝒫 𝑧 ∪ ∪ ( 𝐹 Coll 𝑧 ) ) |
13 |
|
simp3 |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐺 ∧ 𝑤 = ( 𝒫 𝑧 ∪ ∪ ( 𝐹 Coll 𝑧 ) ) ) → 𝑤 = ( 𝒫 𝑧 ∪ ∪ ( 𝐹 Coll 𝑧 ) ) ) |
14 |
12 13
|
sseqtrrid |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐺 ∧ 𝑤 = ( 𝒫 𝑧 ∪ ∪ ( 𝐹 Coll 𝑧 ) ) ) → 𝒫 𝑧 ⊆ 𝑤 ) |
15 |
|
simp1l3 |
⊢ ( ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐺 ∧ 𝑤 = ( 𝒫 𝑧 ∪ ∪ ( 𝐹 Coll 𝑧 ) ) ) ∧ 𝑖 ∈ 𝑧 ) ∧ 𝑣 ∈ 𝐺 ∧ ( 𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓 ) ) → 𝑤 = ( 𝒫 𝑧 ∪ ∪ ( 𝐹 Coll 𝑧 ) ) ) |
16 |
|
simp1r |
⊢ ( ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐺 ∧ 𝑤 = ( 𝒫 𝑧 ∪ ∪ ( 𝐹 Coll 𝑧 ) ) ) ∧ 𝑖 ∈ 𝑧 ) ∧ 𝑣 ∈ 𝐺 ∧ ( 𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓 ) ) → 𝑖 ∈ 𝑧 ) |
17 |
|
simpr |
⊢ ( ( ℎ = ∪ 𝑣 ∧ 𝑗 = 𝑣 ) → 𝑗 = 𝑣 ) |
18 |
17
|
unieqd |
⊢ ( ( ℎ = ∪ 𝑣 ∧ 𝑗 = 𝑣 ) → ∪ 𝑗 = ∪ 𝑣 ) |
19 |
|
simpl |
⊢ ( ( ℎ = ∪ 𝑣 ∧ 𝑗 = 𝑣 ) → ℎ = ∪ 𝑣 ) |
20 |
18 19
|
eqtr4d |
⊢ ( ( ℎ = ∪ 𝑣 ∧ 𝑗 = 𝑣 ) → ∪ 𝑗 = ℎ ) |
21 |
20
|
adantll |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐺 ∧ 𝑤 = ( 𝒫 𝑧 ∪ ∪ ( 𝐹 Coll 𝑧 ) ) ) ∧ 𝑖 ∈ 𝑧 ) ∧ 𝑣 ∈ 𝐺 ∧ ( 𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓 ) ) ∧ ℎ = ∪ 𝑣 ) ∧ 𝑗 = 𝑣 ) → ∪ 𝑗 = ℎ ) |
22 |
|
simpr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐺 ∧ 𝑤 = ( 𝒫 𝑧 ∪ ∪ ( 𝐹 Coll 𝑧 ) ) ) ∧ 𝑖 ∈ 𝑧 ) ∧ 𝑣 ∈ 𝐺 ∧ ( 𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓 ) ) ∧ ℎ = ∪ 𝑣 ) ∧ 𝑗 = 𝑣 ) → 𝑗 = 𝑣 ) |
23 |
|
simpll3 |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐺 ∧ 𝑤 = ( 𝒫 𝑧 ∪ ∪ ( 𝐹 Coll 𝑧 ) ) ) ∧ 𝑖 ∈ 𝑧 ) ∧ 𝑣 ∈ 𝐺 ∧ ( 𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓 ) ) ∧ ℎ = ∪ 𝑣 ) ∧ 𝑗 = 𝑣 ) → ( 𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓 ) ) |
24 |
23
|
simprd |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐺 ∧ 𝑤 = ( 𝒫 𝑧 ∪ ∪ ( 𝐹 Coll 𝑧 ) ) ) ∧ 𝑖 ∈ 𝑧 ) ∧ 𝑣 ∈ 𝐺 ∧ ( 𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓 ) ) ∧ ℎ = ∪ 𝑣 ) ∧ 𝑗 = 𝑣 ) → 𝑣 ∈ 𝑓 ) |
25 |
22 24
|
eqeltrd |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐺 ∧ 𝑤 = ( 𝒫 𝑧 ∪ ∪ ( 𝐹 Coll 𝑧 ) ) ) ∧ 𝑖 ∈ 𝑧 ) ∧ 𝑣 ∈ 𝐺 ∧ ( 𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓 ) ) ∧ ℎ = ∪ 𝑣 ) ∧ 𝑗 = 𝑣 ) → 𝑗 ∈ 𝑓 ) |
26 |
23
|
simpld |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐺 ∧ 𝑤 = ( 𝒫 𝑧 ∪ ∪ ( 𝐹 Coll 𝑧 ) ) ) ∧ 𝑖 ∈ 𝑧 ) ∧ 𝑣 ∈ 𝐺 ∧ ( 𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓 ) ) ∧ ℎ = ∪ 𝑣 ) ∧ 𝑗 = 𝑣 ) → 𝑖 ∈ 𝑣 ) |
27 |
26 22
|
eleqtrrd |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐺 ∧ 𝑤 = ( 𝒫 𝑧 ∪ ∪ ( 𝐹 Coll 𝑧 ) ) ) ∧ 𝑖 ∈ 𝑧 ) ∧ 𝑣 ∈ 𝐺 ∧ ( 𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓 ) ) ∧ ℎ = ∪ 𝑣 ) ∧ 𝑗 = 𝑣 ) → 𝑖 ∈ 𝑗 ) |
28 |
21 25 27
|
3jca |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐺 ∧ 𝑤 = ( 𝒫 𝑧 ∪ ∪ ( 𝐹 Coll 𝑧 ) ) ) ∧ 𝑖 ∈ 𝑧 ) ∧ 𝑣 ∈ 𝐺 ∧ ( 𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓 ) ) ∧ ℎ = ∪ 𝑣 ) ∧ 𝑗 = 𝑣 ) → ( ∪ 𝑗 = ℎ ∧ 𝑗 ∈ 𝑓 ∧ 𝑖 ∈ 𝑗 ) ) |
29 |
|
simpl2 |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐺 ∧ 𝑤 = ( 𝒫 𝑧 ∪ ∪ ( 𝐹 Coll 𝑧 ) ) ) ∧ 𝑖 ∈ 𝑧 ) ∧ 𝑣 ∈ 𝐺 ∧ ( 𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓 ) ) ∧ ℎ = ∪ 𝑣 ) → 𝑣 ∈ 𝐺 ) |
30 |
28 29
|
rr-spce |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐺 ∧ 𝑤 = ( 𝒫 𝑧 ∪ ∪ ( 𝐹 Coll 𝑧 ) ) ) ∧ 𝑖 ∈ 𝑧 ) ∧ 𝑣 ∈ 𝐺 ∧ ( 𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓 ) ) ∧ ℎ = ∪ 𝑣 ) → ∃ 𝑗 ( ∪ 𝑗 = ℎ ∧ 𝑗 ∈ 𝑓 ∧ 𝑖 ∈ 𝑗 ) ) |
31 |
|
simp1l1 |
⊢ ( ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐺 ∧ 𝑤 = ( 𝒫 𝑧 ∪ ∪ ( 𝐹 Coll 𝑧 ) ) ) ∧ 𝑖 ∈ 𝑧 ) ∧ 𝑣 ∈ 𝐺 ∧ ( 𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓 ) ) → 𝜑 ) |
32 |
31 2
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐺 ∧ 𝑤 = ( 𝒫 𝑧 ∪ ∪ ( 𝐹 Coll 𝑧 ) ) ) ∧ 𝑖 ∈ 𝑧 ) ∧ 𝑣 ∈ 𝐺 ∧ ( 𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓 ) ) → 𝐺 ∈ Univ ) |
33 |
|
simp2 |
⊢ ( ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐺 ∧ 𝑤 = ( 𝒫 𝑧 ∪ ∪ ( 𝐹 Coll 𝑧 ) ) ) ∧ 𝑖 ∈ 𝑧 ) ∧ 𝑣 ∈ 𝐺 ∧ ( 𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓 ) ) → 𝑣 ∈ 𝐺 ) |
34 |
|
gruuni |
⊢ ( ( 𝐺 ∈ Univ ∧ 𝑣 ∈ 𝐺 ) → ∪ 𝑣 ∈ 𝐺 ) |
35 |
32 33 34
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐺 ∧ 𝑤 = ( 𝒫 𝑧 ∪ ∪ ( 𝐹 Coll 𝑧 ) ) ) ∧ 𝑖 ∈ 𝑧 ) ∧ 𝑣 ∈ 𝐺 ∧ ( 𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓 ) ) → ∪ 𝑣 ∈ 𝐺 ) |
36 |
30 35
|
rspcime |
⊢ ( ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐺 ∧ 𝑤 = ( 𝒫 𝑧 ∪ ∪ ( 𝐹 Coll 𝑧 ) ) ) ∧ 𝑖 ∈ 𝑧 ) ∧ 𝑣 ∈ 𝐺 ∧ ( 𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓 ) ) → ∃ ℎ ∈ 𝐺 ∃ 𝑗 ( ∪ 𝑗 = ℎ ∧ 𝑗 ∈ 𝑓 ∧ 𝑖 ∈ 𝑗 ) ) |
37 |
|
simpl1 |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐺 ∧ 𝑤 = ( 𝒫 𝑧 ∪ ∪ ( 𝐹 Coll 𝑧 ) ) ) ∧ 𝑖 ∈ 𝑧 ) → 𝜑 ) |
38 |
37 2
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐺 ∧ 𝑤 = ( 𝒫 𝑧 ∪ ∪ ( 𝐹 Coll 𝑧 ) ) ) ∧ 𝑖 ∈ 𝑧 ) → 𝐺 ∈ Univ ) |
39 |
|
simpl2 |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐺 ∧ 𝑤 = ( 𝒫 𝑧 ∪ ∪ ( 𝐹 Coll 𝑧 ) ) ) ∧ 𝑖 ∈ 𝑧 ) → 𝑧 ∈ 𝐺 ) |
40 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐺 ∧ 𝑤 = ( 𝒫 𝑧 ∪ ∪ ( 𝐹 Coll 𝑧 ) ) ) ∧ 𝑖 ∈ 𝑧 ) → 𝑖 ∈ 𝑧 ) |
41 |
|
gruel |
⊢ ( ( 𝐺 ∈ Univ ∧ 𝑧 ∈ 𝐺 ∧ 𝑖 ∈ 𝑧 ) → 𝑖 ∈ 𝐺 ) |
42 |
38 39 40 41
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐺 ∧ 𝑤 = ( 𝒫 𝑧 ∪ ∪ ( 𝐹 Coll 𝑧 ) ) ) ∧ 𝑖 ∈ 𝑧 ) → 𝑖 ∈ 𝐺 ) |
43 |
42
|
3ad2ant1 |
⊢ ( ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐺 ∧ 𝑤 = ( 𝒫 𝑧 ∪ ∪ ( 𝐹 Coll 𝑧 ) ) ) ∧ 𝑖 ∈ 𝑧 ) ∧ 𝑣 ∈ 𝐺 ∧ ( 𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓 ) ) → 𝑖 ∈ 𝐺 ) |
44 |
43 4
|
sylan |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐺 ∧ 𝑤 = ( 𝒫 𝑧 ∪ ∪ ( 𝐹 Coll 𝑧 ) ) ) ∧ 𝑖 ∈ 𝑧 ) ∧ 𝑣 ∈ 𝐺 ∧ ( 𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓 ) ) ∧ ℎ ∈ 𝐺 ) → ( 𝑖 𝐹 ℎ ↔ ∃ 𝑗 ( ∪ 𝑗 = ℎ ∧ 𝑗 ∈ 𝑓 ∧ 𝑖 ∈ 𝑗 ) ) ) |
45 |
44
|
rexbidva |
⊢ ( ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐺 ∧ 𝑤 = ( 𝒫 𝑧 ∪ ∪ ( 𝐹 Coll 𝑧 ) ) ) ∧ 𝑖 ∈ 𝑧 ) ∧ 𝑣 ∈ 𝐺 ∧ ( 𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓 ) ) → ( ∃ ℎ ∈ 𝐺 𝑖 𝐹 ℎ ↔ ∃ ℎ ∈ 𝐺 ∃ 𝑗 ( ∪ 𝑗 = ℎ ∧ 𝑗 ∈ 𝑓 ∧ 𝑖 ∈ 𝑗 ) ) ) |
46 |
36 45
|
mpbird |
⊢ ( ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐺 ∧ 𝑤 = ( 𝒫 𝑧 ∪ ∪ ( 𝐹 Coll 𝑧 ) ) ) ∧ 𝑖 ∈ 𝑧 ) ∧ 𝑣 ∈ 𝐺 ∧ ( 𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓 ) ) → ∃ ℎ ∈ 𝐺 𝑖 𝐹 ℎ ) |
47 |
|
rexex |
⊢ ( ∃ ℎ ∈ 𝐺 𝑖 𝐹 ℎ → ∃ ℎ 𝑖 𝐹 ℎ ) |
48 |
46 47
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐺 ∧ 𝑤 = ( 𝒫 𝑧 ∪ ∪ ( 𝐹 Coll 𝑧 ) ) ) ∧ 𝑖 ∈ 𝑧 ) ∧ 𝑣 ∈ 𝐺 ∧ ( 𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓 ) ) → ∃ ℎ 𝑖 𝐹 ℎ ) |
49 |
16 48
|
cpcoll2d |
⊢ ( ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐺 ∧ 𝑤 = ( 𝒫 𝑧 ∪ ∪ ( 𝐹 Coll 𝑧 ) ) ) ∧ 𝑖 ∈ 𝑧 ) ∧ 𝑣 ∈ 𝐺 ∧ ( 𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓 ) ) → ∃ ℎ ∈ ( 𝐹 Coll 𝑧 ) 𝑖 𝐹 ℎ ) |
50 |
32
|
adantr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐺 ∧ 𝑤 = ( 𝒫 𝑧 ∪ ∪ ( 𝐹 Coll 𝑧 ) ) ) ∧ 𝑖 ∈ 𝑧 ) ∧ 𝑣 ∈ 𝐺 ∧ ( 𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓 ) ) ∧ ℎ ∈ ( 𝐹 Coll 𝑧 ) ) → 𝐺 ∈ Univ ) |
51 |
39
|
3ad2ant1 |
⊢ ( ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐺 ∧ 𝑤 = ( 𝒫 𝑧 ∪ ∪ ( 𝐹 Coll 𝑧 ) ) ) ∧ 𝑖 ∈ 𝑧 ) ∧ 𝑣 ∈ 𝐺 ∧ ( 𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓 ) ) → 𝑧 ∈ 𝐺 ) |
52 |
51
|
adantr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐺 ∧ 𝑤 = ( 𝒫 𝑧 ∪ ∪ ( 𝐹 Coll 𝑧 ) ) ) ∧ 𝑖 ∈ 𝑧 ) ∧ 𝑣 ∈ 𝐺 ∧ ( 𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓 ) ) ∧ ℎ ∈ ( 𝐹 Coll 𝑧 ) ) → 𝑧 ∈ 𝐺 ) |
53 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐺 ) → 𝐺 ∈ Univ ) |
54 |
|
inss2 |
⊢ ( { 〈 𝑏 , 𝑐 〉 ∣ ∃ 𝑑 ( ∪ 𝑑 = 𝑐 ∧ 𝑑 ∈ 𝑓 ∧ 𝑏 ∈ 𝑑 ) } ∩ ( 𝐺 × 𝐺 ) ) ⊆ ( 𝐺 × 𝐺 ) |
55 |
3 54
|
eqsstri |
⊢ 𝐹 ⊆ ( 𝐺 × 𝐺 ) |
56 |
55
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐺 ) → 𝐹 ⊆ ( 𝐺 × 𝐺 ) ) |
57 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐺 ) → 𝑧 ∈ 𝐺 ) |
58 |
53 56 57
|
grucollcld |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐺 ) → ( 𝐹 Coll 𝑧 ) ∈ 𝐺 ) |
59 |
31 52 58
|
syl2an2r |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐺 ∧ 𝑤 = ( 𝒫 𝑧 ∪ ∪ ( 𝐹 Coll 𝑧 ) ) ) ∧ 𝑖 ∈ 𝑧 ) ∧ 𝑣 ∈ 𝐺 ∧ ( 𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓 ) ) ∧ ℎ ∈ ( 𝐹 Coll 𝑧 ) ) → ( 𝐹 Coll 𝑧 ) ∈ 𝐺 ) |
60 |
|
simpr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐺 ∧ 𝑤 = ( 𝒫 𝑧 ∪ ∪ ( 𝐹 Coll 𝑧 ) ) ) ∧ 𝑖 ∈ 𝑧 ) ∧ 𝑣 ∈ 𝐺 ∧ ( 𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓 ) ) ∧ ℎ ∈ ( 𝐹 Coll 𝑧 ) ) → ℎ ∈ ( 𝐹 Coll 𝑧 ) ) |
61 |
|
gruel |
⊢ ( ( 𝐺 ∈ Univ ∧ ( 𝐹 Coll 𝑧 ) ∈ 𝐺 ∧ ℎ ∈ ( 𝐹 Coll 𝑧 ) ) → ℎ ∈ 𝐺 ) |
62 |
50 59 60 61
|
syl3anc |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐺 ∧ 𝑤 = ( 𝒫 𝑧 ∪ ∪ ( 𝐹 Coll 𝑧 ) ) ) ∧ 𝑖 ∈ 𝑧 ) ∧ 𝑣 ∈ 𝐺 ∧ ( 𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓 ) ) ∧ ℎ ∈ ( 𝐹 Coll 𝑧 ) ) → ℎ ∈ 𝐺 ) |
63 |
43 62 4
|
syl2an2r |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐺 ∧ 𝑤 = ( 𝒫 𝑧 ∪ ∪ ( 𝐹 Coll 𝑧 ) ) ) ∧ 𝑖 ∈ 𝑧 ) ∧ 𝑣 ∈ 𝐺 ∧ ( 𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓 ) ) ∧ ℎ ∈ ( 𝐹 Coll 𝑧 ) ) → ( 𝑖 𝐹 ℎ ↔ ∃ 𝑗 ( ∪ 𝑗 = ℎ ∧ 𝑗 ∈ 𝑓 ∧ 𝑖 ∈ 𝑗 ) ) ) |
64 |
63
|
rexbidva |
⊢ ( ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐺 ∧ 𝑤 = ( 𝒫 𝑧 ∪ ∪ ( 𝐹 Coll 𝑧 ) ) ) ∧ 𝑖 ∈ 𝑧 ) ∧ 𝑣 ∈ 𝐺 ∧ ( 𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓 ) ) → ( ∃ ℎ ∈ ( 𝐹 Coll 𝑧 ) 𝑖 𝐹 ℎ ↔ ∃ ℎ ∈ ( 𝐹 Coll 𝑧 ) ∃ 𝑗 ( ∪ 𝑗 = ℎ ∧ 𝑗 ∈ 𝑓 ∧ 𝑖 ∈ 𝑗 ) ) ) |
65 |
49 64
|
mpbid |
⊢ ( ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐺 ∧ 𝑤 = ( 𝒫 𝑧 ∪ ∪ ( 𝐹 Coll 𝑧 ) ) ) ∧ 𝑖 ∈ 𝑧 ) ∧ 𝑣 ∈ 𝐺 ∧ ( 𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓 ) ) → ∃ ℎ ∈ ( 𝐹 Coll 𝑧 ) ∃ 𝑗 ( ∪ 𝑗 = ℎ ∧ 𝑗 ∈ 𝑓 ∧ 𝑖 ∈ 𝑗 ) ) |
66 |
|
rexcom4 |
⊢ ( ∃ ℎ ∈ ( 𝐹 Coll 𝑧 ) ∃ 𝑗 ( ∪ 𝑗 = ℎ ∧ 𝑗 ∈ 𝑓 ∧ 𝑖 ∈ 𝑗 ) ↔ ∃ 𝑗 ∃ ℎ ∈ ( 𝐹 Coll 𝑧 ) ( ∪ 𝑗 = ℎ ∧ 𝑗 ∈ 𝑓 ∧ 𝑖 ∈ 𝑗 ) ) |
67 |
5
|
rexlimiva |
⊢ ( ∃ ℎ ∈ ( 𝐹 Coll 𝑧 ) ( ∪ 𝑗 = ℎ ∧ 𝑗 ∈ 𝑓 ∧ 𝑖 ∈ 𝑗 ) → ∃ 𝑢 ∈ 𝑓 ( 𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ∈ ( 𝐹 Coll 𝑧 ) ) ) |
68 |
67
|
exlimiv |
⊢ ( ∃ 𝑗 ∃ ℎ ∈ ( 𝐹 Coll 𝑧 ) ( ∪ 𝑗 = ℎ ∧ 𝑗 ∈ 𝑓 ∧ 𝑖 ∈ 𝑗 ) → ∃ 𝑢 ∈ 𝑓 ( 𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ∈ ( 𝐹 Coll 𝑧 ) ) ) |
69 |
66 68
|
sylbi |
⊢ ( ∃ ℎ ∈ ( 𝐹 Coll 𝑧 ) ∃ 𝑗 ( ∪ 𝑗 = ℎ ∧ 𝑗 ∈ 𝑓 ∧ 𝑖 ∈ 𝑗 ) → ∃ 𝑢 ∈ 𝑓 ( 𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ∈ ( 𝐹 Coll 𝑧 ) ) ) |
70 |
65 69
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐺 ∧ 𝑤 = ( 𝒫 𝑧 ∪ ∪ ( 𝐹 Coll 𝑧 ) ) ) ∧ 𝑖 ∈ 𝑧 ) ∧ 𝑣 ∈ 𝐺 ∧ ( 𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓 ) ) → ∃ 𝑢 ∈ 𝑓 ( 𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ∈ ( 𝐹 Coll 𝑧 ) ) ) |
71 |
|
elssuni |
⊢ ( ∪ 𝑢 ∈ ( 𝐹 Coll 𝑧 ) → ∪ 𝑢 ⊆ ∪ ( 𝐹 Coll 𝑧 ) ) |
72 |
|
ssun2 |
⊢ ∪ ( 𝐹 Coll 𝑧 ) ⊆ ( 𝒫 𝑧 ∪ ∪ ( 𝐹 Coll 𝑧 ) ) |
73 |
71 72
|
sstrdi |
⊢ ( ∪ 𝑢 ∈ ( 𝐹 Coll 𝑧 ) → ∪ 𝑢 ⊆ ( 𝒫 𝑧 ∪ ∪ ( 𝐹 Coll 𝑧 ) ) ) |
74 |
73
|
adantl |
⊢ ( ( 𝑤 = ( 𝒫 𝑧 ∪ ∪ ( 𝐹 Coll 𝑧 ) ) ∧ ∪ 𝑢 ∈ ( 𝐹 Coll 𝑧 ) ) → ∪ 𝑢 ⊆ ( 𝒫 𝑧 ∪ ∪ ( 𝐹 Coll 𝑧 ) ) ) |
75 |
|
simpl |
⊢ ( ( 𝑤 = ( 𝒫 𝑧 ∪ ∪ ( 𝐹 Coll 𝑧 ) ) ∧ ∪ 𝑢 ∈ ( 𝐹 Coll 𝑧 ) ) → 𝑤 = ( 𝒫 𝑧 ∪ ∪ ( 𝐹 Coll 𝑧 ) ) ) |
76 |
74 75
|
sseqtrrd |
⊢ ( ( 𝑤 = ( 𝒫 𝑧 ∪ ∪ ( 𝐹 Coll 𝑧 ) ) ∧ ∪ 𝑢 ∈ ( 𝐹 Coll 𝑧 ) ) → ∪ 𝑢 ⊆ 𝑤 ) |
77 |
76
|
ex |
⊢ ( 𝑤 = ( 𝒫 𝑧 ∪ ∪ ( 𝐹 Coll 𝑧 ) ) → ( ∪ 𝑢 ∈ ( 𝐹 Coll 𝑧 ) → ∪ 𝑢 ⊆ 𝑤 ) ) |
78 |
77
|
anim2d |
⊢ ( 𝑤 = ( 𝒫 𝑧 ∪ ∪ ( 𝐹 Coll 𝑧 ) ) → ( ( 𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ∈ ( 𝐹 Coll 𝑧 ) ) → ( 𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤 ) ) ) |
79 |
78
|
reximdv |
⊢ ( 𝑤 = ( 𝒫 𝑧 ∪ ∪ ( 𝐹 Coll 𝑧 ) ) → ( ∃ 𝑢 ∈ 𝑓 ( 𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ∈ ( 𝐹 Coll 𝑧 ) ) → ∃ 𝑢 ∈ 𝑓 ( 𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤 ) ) ) |
80 |
15 70 79
|
sylc |
⊢ ( ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐺 ∧ 𝑤 = ( 𝒫 𝑧 ∪ ∪ ( 𝐹 Coll 𝑧 ) ) ) ∧ 𝑖 ∈ 𝑧 ) ∧ 𝑣 ∈ 𝐺 ∧ ( 𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓 ) ) → ∃ 𝑢 ∈ 𝑓 ( 𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤 ) ) |
81 |
80
|
rexlimdv3a |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐺 ∧ 𝑤 = ( 𝒫 𝑧 ∪ ∪ ( 𝐹 Coll 𝑧 ) ) ) ∧ 𝑖 ∈ 𝑧 ) → ( ∃ 𝑣 ∈ 𝐺 ( 𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓 ) → ∃ 𝑢 ∈ 𝑓 ( 𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤 ) ) ) |
82 |
81
|
ralrimiva |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐺 ∧ 𝑤 = ( 𝒫 𝑧 ∪ ∪ ( 𝐹 Coll 𝑧 ) ) ) → ∀ 𝑖 ∈ 𝑧 ( ∃ 𝑣 ∈ 𝐺 ( 𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓 ) → ∃ 𝑢 ∈ 𝑓 ( 𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤 ) ) ) |
83 |
14 82
|
jca |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐺 ∧ 𝑤 = ( 𝒫 𝑧 ∪ ∪ ( 𝐹 Coll 𝑧 ) ) ) → ( 𝒫 𝑧 ⊆ 𝑤 ∧ ∀ 𝑖 ∈ 𝑧 ( ∃ 𝑣 ∈ 𝐺 ( 𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓 ) → ∃ 𝑢 ∈ 𝑓 ( 𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤 ) ) ) ) |
84 |
83
|
3expa |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐺 ) ∧ 𝑤 = ( 𝒫 𝑧 ∪ ∪ ( 𝐹 Coll 𝑧 ) ) ) → ( 𝒫 𝑧 ⊆ 𝑤 ∧ ∀ 𝑖 ∈ 𝑧 ( ∃ 𝑣 ∈ 𝐺 ( 𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓 ) → ∃ 𝑢 ∈ 𝑓 ( 𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤 ) ) ) ) |
85 |
|
grupw |
⊢ ( ( 𝐺 ∈ Univ ∧ 𝑧 ∈ 𝐺 ) → 𝒫 𝑧 ∈ 𝐺 ) |
86 |
2 85
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐺 ) → 𝒫 𝑧 ∈ 𝐺 ) |
87 |
|
gruuni |
⊢ ( ( 𝐺 ∈ Univ ∧ ( 𝐹 Coll 𝑧 ) ∈ 𝐺 ) → ∪ ( 𝐹 Coll 𝑧 ) ∈ 𝐺 ) |
88 |
2 58 87
|
syl2an2r |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐺 ) → ∪ ( 𝐹 Coll 𝑧 ) ∈ 𝐺 ) |
89 |
|
gruun |
⊢ ( ( 𝐺 ∈ Univ ∧ 𝒫 𝑧 ∈ 𝐺 ∧ ∪ ( 𝐹 Coll 𝑧 ) ∈ 𝐺 ) → ( 𝒫 𝑧 ∪ ∪ ( 𝐹 Coll 𝑧 ) ) ∈ 𝐺 ) |
90 |
53 86 88 89
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐺 ) → ( 𝒫 𝑧 ∪ ∪ ( 𝐹 Coll 𝑧 ) ) ∈ 𝐺 ) |
91 |
84 90
|
rspcime |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐺 ) → ∃ 𝑤 ∈ 𝐺 ( 𝒫 𝑧 ⊆ 𝑤 ∧ ∀ 𝑖 ∈ 𝑧 ( ∃ 𝑣 ∈ 𝐺 ( 𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓 ) → ∃ 𝑢 ∈ 𝑓 ( 𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤 ) ) ) ) |
92 |
91
|
alrimiv |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐺 ) → ∀ 𝑓 ∃ 𝑤 ∈ 𝐺 ( 𝒫 𝑧 ⊆ 𝑤 ∧ ∀ 𝑖 ∈ 𝑧 ( ∃ 𝑣 ∈ 𝐺 ( 𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓 ) → ∃ 𝑢 ∈ 𝑓 ( 𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤 ) ) ) ) |
93 |
11 92
|
jca |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐺 ) → ( 𝒫 𝑧 ⊆ 𝐺 ∧ ∀ 𝑓 ∃ 𝑤 ∈ 𝐺 ( 𝒫 𝑧 ⊆ 𝑤 ∧ ∀ 𝑖 ∈ 𝑧 ( ∃ 𝑣 ∈ 𝐺 ( 𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓 ) → ∃ 𝑢 ∈ 𝑓 ( 𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤 ) ) ) ) ) |
94 |
93
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑧 ∈ 𝐺 ( 𝒫 𝑧 ⊆ 𝐺 ∧ ∀ 𝑓 ∃ 𝑤 ∈ 𝐺 ( 𝒫 𝑧 ⊆ 𝑤 ∧ ∀ 𝑖 ∈ 𝑧 ( ∃ 𝑣 ∈ 𝐺 ( 𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓 ) → ∃ 𝑢 ∈ 𝑓 ( 𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤 ) ) ) ) ) |
95 |
1
|
ismnu |
⊢ ( 𝐺 ∈ Univ → ( 𝐺 ∈ 𝑀 ↔ ∀ 𝑧 ∈ 𝐺 ( 𝒫 𝑧 ⊆ 𝐺 ∧ ∀ 𝑓 ∃ 𝑤 ∈ 𝐺 ( 𝒫 𝑧 ⊆ 𝑤 ∧ ∀ 𝑖 ∈ 𝑧 ( ∃ 𝑣 ∈ 𝐺 ( 𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓 ) → ∃ 𝑢 ∈ 𝑓 ( 𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤 ) ) ) ) ) ) |
96 |
2 95
|
syl |
⊢ ( 𝜑 → ( 𝐺 ∈ 𝑀 ↔ ∀ 𝑧 ∈ 𝐺 ( 𝒫 𝑧 ⊆ 𝐺 ∧ ∀ 𝑓 ∃ 𝑤 ∈ 𝐺 ( 𝒫 𝑧 ⊆ 𝑤 ∧ ∀ 𝑖 ∈ 𝑧 ( ∃ 𝑣 ∈ 𝐺 ( 𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓 ) → ∃ 𝑢 ∈ 𝑓 ( 𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤 ) ) ) ) ) ) |
97 |
94 96
|
mpbird |
⊢ ( 𝜑 → 𝐺 ∈ 𝑀 ) |