Description: A Grothendieck universe contains unions of its elements. (Contributed by Mario Carneiro, 17-Jun-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | gruuni | ⊢ ( ( 𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈 ) → ∪ 𝐴 ∈ 𝑈 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uniiun | ⊢ ∪ 𝐴 = ∪ 𝑥 ∈ 𝐴 𝑥 | |
| 2 | gruelss | ⊢ ( ( 𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈 ) → 𝐴 ⊆ 𝑈 ) | |
| 3 | dfss3 | ⊢ ( 𝐴 ⊆ 𝑈 ↔ ∀ 𝑥 ∈ 𝐴 𝑥 ∈ 𝑈 ) | |
| 4 | 2 3 | sylib | ⊢ ( ( 𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈 ) → ∀ 𝑥 ∈ 𝐴 𝑥 ∈ 𝑈 ) |
| 5 | gruiun | ⊢ ( ( 𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈 ∧ ∀ 𝑥 ∈ 𝐴 𝑥 ∈ 𝑈 ) → ∪ 𝑥 ∈ 𝐴 𝑥 ∈ 𝑈 ) | |
| 6 | 4 5 | mpd3an3 | ⊢ ( ( 𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈 ) → ∪ 𝑥 ∈ 𝐴 𝑥 ∈ 𝑈 ) |
| 7 | 1 6 | eqeltrid | ⊢ ( ( 𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈 ) → ∪ 𝐴 ∈ 𝑈 ) |