Metamath Proof Explorer
Description: A Grothendieck universe is transitive, so each element is a subset of
the universe. (Contributed by Mario Carneiro, 9-Jun-2013)
|
|
Ref |
Expression |
|
Assertion |
gruelss |
⊢ ( ( 𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈 ) → 𝐴 ⊆ 𝑈 ) |
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
grutr |
⊢ ( 𝑈 ∈ Univ → Tr 𝑈 ) |
| 2 |
|
trss |
⊢ ( Tr 𝑈 → ( 𝐴 ∈ 𝑈 → 𝐴 ⊆ 𝑈 ) ) |
| 3 |
2
|
imp |
⊢ ( ( Tr 𝑈 ∧ 𝐴 ∈ 𝑈 ) → 𝐴 ⊆ 𝑈 ) |
| 4 |
1 3
|
sylan |
⊢ ( ( 𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈 ) → 𝐴 ⊆ 𝑈 ) |