Metamath Proof Explorer


Theorem grutr

Description: A Grothendieck universe is transitive. (Contributed by Mario Carneiro, 2-Jan-2017)

Ref Expression
Assertion grutr ( 𝑈 ∈ Univ → Tr 𝑈 )

Proof

Step Hyp Ref Expression
1 elgrug ( 𝑈 ∈ Univ → ( 𝑈 ∈ Univ ↔ ( Tr 𝑈 ∧ ∀ 𝑥𝑈 ( 𝒫 𝑥𝑈 ∧ ∀ 𝑦𝑈 { 𝑥 , 𝑦 } ∈ 𝑈 ∧ ∀ 𝑦 ∈ ( 𝑈m 𝑥 ) ran 𝑦𝑈 ) ) ) )
2 1 ibi ( 𝑈 ∈ Univ → ( Tr 𝑈 ∧ ∀ 𝑥𝑈 ( 𝒫 𝑥𝑈 ∧ ∀ 𝑦𝑈 { 𝑥 , 𝑦 } ∈ 𝑈 ∧ ∀ 𝑦 ∈ ( 𝑈m 𝑥 ) ran 𝑦𝑈 ) ) )
3 2 simpld ( 𝑈 ∈ Univ → Tr 𝑈 )