Step |
Hyp |
Ref |
Expression |
1 |
|
simp1 |
⊢ ( ( 𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈 ∧ 𝐹 : 𝐴 ⟶ 𝑈 ) → 𝑈 ∈ Univ ) |
2 |
|
gruurn |
⊢ ( ( 𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈 ∧ 𝐹 : 𝐴 ⟶ 𝑈 ) → ∪ ran 𝐹 ∈ 𝑈 ) |
3 |
|
grupw |
⊢ ( ( 𝑈 ∈ Univ ∧ ∪ ran 𝐹 ∈ 𝑈 ) → 𝒫 ∪ ran 𝐹 ∈ 𝑈 ) |
4 |
1 2 3
|
syl2anc |
⊢ ( ( 𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈 ∧ 𝐹 : 𝐴 ⟶ 𝑈 ) → 𝒫 ∪ ran 𝐹 ∈ 𝑈 ) |
5 |
|
pwuni |
⊢ ran 𝐹 ⊆ 𝒫 ∪ ran 𝐹 |
6 |
5
|
a1i |
⊢ ( ( 𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈 ∧ 𝐹 : 𝐴 ⟶ 𝑈 ) → ran 𝐹 ⊆ 𝒫 ∪ ran 𝐹 ) |
7 |
|
gruss |
⊢ ( ( 𝑈 ∈ Univ ∧ 𝒫 ∪ ran 𝐹 ∈ 𝑈 ∧ ran 𝐹 ⊆ 𝒫 ∪ ran 𝐹 ) → ran 𝐹 ∈ 𝑈 ) |
8 |
1 4 6 7
|
syl3anc |
⊢ ( ( 𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈 ∧ 𝐹 : 𝐴 ⟶ 𝑈 ) → ran 𝐹 ∈ 𝑈 ) |