Metamath Proof Explorer


Theorem grurn

Description: A Grothendieck universe contains the range of any function which takes values in the universe (see gruiun for a more intuitive version). (Contributed by Mario Carneiro, 9-Jun-2013)

Ref Expression
Assertion grurn ( ( 𝑈 ∈ Univ ∧ 𝐴𝑈𝐹 : 𝐴𝑈 ) → ran 𝐹𝑈 )

Proof

Step Hyp Ref Expression
1 simp1 ( ( 𝑈 ∈ Univ ∧ 𝐴𝑈𝐹 : 𝐴𝑈 ) → 𝑈 ∈ Univ )
2 gruurn ( ( 𝑈 ∈ Univ ∧ 𝐴𝑈𝐹 : 𝐴𝑈 ) → ran 𝐹𝑈 )
3 grupw ( ( 𝑈 ∈ Univ ∧ ran 𝐹𝑈 ) → 𝒫 ran 𝐹𝑈 )
4 1 2 3 syl2anc ( ( 𝑈 ∈ Univ ∧ 𝐴𝑈𝐹 : 𝐴𝑈 ) → 𝒫 ran 𝐹𝑈 )
5 pwuni ran 𝐹 ⊆ 𝒫 ran 𝐹
6 5 a1i ( ( 𝑈 ∈ Univ ∧ 𝐴𝑈𝐹 : 𝐴𝑈 ) → ran 𝐹 ⊆ 𝒫 ran 𝐹 )
7 gruss ( ( 𝑈 ∈ Univ ∧ 𝒫 ran 𝐹𝑈 ∧ ran 𝐹 ⊆ 𝒫 ran 𝐹 ) → ran 𝐹𝑈 )
8 1 4 6 7 syl3anc ( ( 𝑈 ∈ Univ ∧ 𝐴𝑈𝐹 : 𝐴𝑈 ) → ran 𝐹𝑈 )