Metamath Proof Explorer


Theorem grurn

Description: A Grothendieck universe contains the range of any function which takes values in the universe (see gruiun for a more intuitive version). (Contributed by Mario Carneiro, 9-Jun-2013)

Ref Expression
Assertion grurn
|- ( ( U e. Univ /\ A e. U /\ F : A --> U ) -> ran F e. U )

Proof

Step Hyp Ref Expression
1 simp1
 |-  ( ( U e. Univ /\ A e. U /\ F : A --> U ) -> U e. Univ )
2 gruurn
 |-  ( ( U e. Univ /\ A e. U /\ F : A --> U ) -> U. ran F e. U )
3 grupw
 |-  ( ( U e. Univ /\ U. ran F e. U ) -> ~P U. ran F e. U )
4 1 2 3 syl2anc
 |-  ( ( U e. Univ /\ A e. U /\ F : A --> U ) -> ~P U. ran F e. U )
5 pwuni
 |-  ran F C_ ~P U. ran F
6 5 a1i
 |-  ( ( U e. Univ /\ A e. U /\ F : A --> U ) -> ran F C_ ~P U. ran F )
7 gruss
 |-  ( ( U e. Univ /\ ~P U. ran F e. U /\ ran F C_ ~P U. ran F ) -> ran F e. U )
8 1 4 6 7 syl3anc
 |-  ( ( U e. Univ /\ A e. U /\ F : A --> U ) -> ran F e. U )