Metamath Proof Explorer


Theorem grurn

Description: A Grothendieck universe contains the range of any function which takes values in the universe (see gruiun for a more intuitive version). (Contributed by Mario Carneiro, 9-Jun-2013)

Ref Expression
Assertion grurn UUnivAUF:AUranFU

Proof

Step Hyp Ref Expression
1 simp1 UUnivAUF:AUUUniv
2 gruurn UUnivAUF:AUranFU
3 grupw UUnivranFU𝒫ranFU
4 1 2 3 syl2anc UUnivAUF:AU𝒫ranFU
5 pwuni ranF𝒫ranF
6 5 a1i UUnivAUF:AUranF𝒫ranF
7 gruss UUniv𝒫ranFUranF𝒫ranFranFU
8 1 4 6 7 syl3anc UUnivAUF:AUranFU