Database TG (TARSKI-GROTHENDIECK) SET THEORY Inaccessibles Grothendieck universes df-gru  
				
		 
		
			
		 
		Description:   A Grothendieck universe is a set that is closed with respect to all the
       operations that are common in set theory: pairs, powersets, unions,
       intersections, Cartesian products etc.  Grothendieck and alii,
       Séminaire de Géométrie Algébrique 4,
       Exposé I, p. 185.  It was designed to give a precise meaning to
       the concepts of categories of sets, groups...  (Contributed by Mario
       Carneiro , 9-Jun-2013) 
		
			
				
					Ref 
					Expression 
				 
				
					Assertion 
					df-gru   ⊢   Univ  =   u   |    Tr  ⁡  u    ∧   ∀  x  ∈  u     𝒫  x    ∈  u    ∧   ∀  y  ∈  u    x  y    ∈  u      ∧   ∀  y  ∈   u  x     ⋃   ran  ⁡  y      ∈  u                
				 
			
		 
		
				Detailed syntax breakdown 
				
					
						Step 
						Hyp 
						Ref 
						Expression 
					 
						
							0 
								
							 
							cgru  class  Univ    
						
							1 
								
							 
							vu  setvar  u    
						
							2 
								1 
							 
							cv  setvar  u    
						
							3 
								2 
							 
							wtr  wff   Tr  ⁡  u      
						
							4 
								
							 
							vx  setvar  x    
						
							5 
								4 
							 
							cv  setvar  x    
						
							6 
								5 
							 
							cpw  class   𝒫  x      
						
							7 
								6  2 
							 
							wcel  wff    𝒫  x    ∈  u      
						
							8 
								
							 
							vy  setvar  y    
						
							9 
								8 
							 
							cv  setvar  y    
						
							10 
								5  9 
							 
							cpr  class   x  y      
						
							11 
								10  2 
							 
							wcel  wff    x  y    ∈  u      
						
							12 
								11  8  2 
							 
							wral  wff   ∀  y  ∈  u    x  y    ∈  u        
						
							13 
								
							 
							cmap  class   ↑  𝑚      
						
							14 
								2  5  13 
							 
							co  class   u  x      
						
							15 
								9 
							 
							crn  class   ran  ⁡  y      
						
							16 
								15 
							 
							cuni  class   ⋃   ran  ⁡  y        
						
							17 
								16  2 
							 
							wcel  wff    ⋃   ran  ⁡  y      ∈  u      
						
							18 
								17  8  14 
							 
							wral  wff   ∀  y  ∈   u  x     ⋃   ran  ⁡  y      ∈  u        
						
							19 
								7  12  18 
							 
							w3a  wff     𝒫  x    ∈  u    ∧   ∀  y  ∈  u    x  y    ∈  u      ∧   ∀  y  ∈   u  x     ⋃   ran  ⁡  y      ∈  u          
						
							20 
								19  4  2 
							 
							wral  wff   ∀  x  ∈  u     𝒫  x    ∈  u    ∧   ∀  y  ∈  u    x  y    ∈  u      ∧   ∀  y  ∈   u  x     ⋃   ran  ⁡  y      ∈  u           
						
							21 
								3  20 
							 
							wa  wff    Tr  ⁡  u    ∧   ∀  x  ∈  u     𝒫  x    ∈  u    ∧   ∀  y  ∈  u    x  y    ∈  u      ∧   ∀  y  ∈   u  x     ⋃   ran  ⁡  y      ∈  u             
						
							22 
								21  1 
							 
							cab  class   u   |    Tr  ⁡  u    ∧   ∀  x  ∈  u     𝒫  x    ∈  u    ∧   ∀  y  ∈  u    x  y    ∈  u      ∧   ∀  y  ∈   u  x     ⋃   ran  ⁡  y      ∈  u              
						
							23 
								0  22 
							 
							wceq  wff   Univ  =   u   |    Tr  ⁡  u    ∧   ∀  x  ∈  u     𝒫  x    ∈  u    ∧   ∀  y  ∈  u    x  y    ∈  u      ∧   ∀  y  ∈   u  x     ⋃   ran  ⁡  y      ∈  u