Metamath Proof Explorer


Theorem gruiun

Description: If B ( x ) is a family of elements of U and the index set A is an element of U , then the indexed union U_ x e. A B is also an element of U , where U is a Grothendieck universe. (Contributed by Mario Carneiro, 9-Jun-2013)

Ref Expression
Assertion gruiun U Univ A U x A B U x A B U

Proof

Step Hyp Ref Expression
1 eqid x A B = x A B
2 1 fnmpt x A B U x A B Fn A
3 1 rnmptss x A B U ran x A B U
4 df-f x A B : A U x A B Fn A ran x A B U
5 2 3 4 sylanbrc x A B U x A B : A U
6 gruurn U Univ A U x A B : A U ran x A B U
7 6 3expia U Univ A U x A B : A U ran x A B U
8 5 7 syl5com x A B U U Univ A U ran x A B U
9 dfiun3g x A B U x A B = ran x A B
10 9 eleq1d x A B U x A B U ran x A B U
11 8 10 sylibrd x A B U U Univ A U x A B U
12 11 com12 U Univ A U x A B U x A B U
13 12 3impia U Univ A U x A B U x A B U