Metamath Proof Explorer


Theorem gruurn

Description: A Grothendieck universe contains the range of any function which takes values in the universe (see gruiun for a more intuitive version). (Contributed by Mario Carneiro, 9-Jun-2013)

Ref Expression
Assertion gruurn UUnivAUF:AUranFU

Proof

Step Hyp Ref Expression
1 elmapg UUnivAUFUAF:AU
2 elgrug UUnivUUnivTrUxU𝒫xUyUxyUyUxranyU
3 2 ibi UUnivTrUxU𝒫xUyUxyUyUxranyU
4 3 simprd UUnivxU𝒫xUyUxyUyUxranyU
5 rneq y=Frany=ranF
6 5 unieqd y=Frany=ranF
7 6 eleq1d y=FranyUranFU
8 7 rspccv yUxranyUFUxranFU
9 8 3ad2ant3 𝒫xUyUxyUyUxranyUFUxranFU
10 9 ralimi xU𝒫xUyUxyUyUxranyUxUFUxranFU
11 oveq2 x=AUx=UA
12 11 eleq2d x=AFUxFUA
13 12 imbi1d x=AFUxranFUFUAranFU
14 13 rspccv xUFUxranFUAUFUAranFU
15 4 10 14 3syl UUnivAUFUAranFU
16 15 imp UUnivAUFUAranFU
17 1 16 sylbird UUnivAUF:AUranFU
18 17 3impia UUnivAUF:AUranFU