Metamath Proof Explorer


Theorem grupw

Description: A Grothendieck universe contains the powerset of each of its members. (Contributed by Mario Carneiro, 9-Jun-2013)

Ref Expression
Assertion grupw UUnivAU𝒫AU

Proof

Step Hyp Ref Expression
1 elgrug UUnivUUnivTrUyU𝒫yUxUyxUxUyranxU
2 1 ibi UUnivTrUyU𝒫yUxUyxUxUyranxU
3 2 simprd UUnivyU𝒫yUxUyxUxUyranxU
4 simp1 𝒫yUxUyxUxUyranxU𝒫yU
5 4 ralimi yU𝒫yUxUyxUxUyranxUyU𝒫yU
6 pweq y=A𝒫y=𝒫A
7 6 eleq1d y=A𝒫yU𝒫AU
8 7 rspccv yU𝒫yUAU𝒫AU
9 3 5 8 3syl UUnivAU𝒫AU
10 9 imp UUnivAU𝒫AU