Description: Any subset of an element of a Grothendieck universe is also an element. (Contributed by Mario Carneiro, 9-Jun-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | gruss |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elpw2g | ||
| 2 | 1 | adantl | |
| 3 | grupw | ||
| 4 | gruelss | ||
| 5 | 3 4 | syldan | |
| 6 | 5 | sseld | |
| 7 | 2 6 | sylbird | |
| 8 | 7 | 3impia |