Metamath Proof Explorer


Theorem gruss

Description: Any subset of an element of a Grothendieck universe is also an element. (Contributed by Mario Carneiro, 9-Jun-2013)

Ref Expression
Assertion gruss
|- ( ( U e. Univ /\ A e. U /\ B C_ A ) -> B e. U )

Proof

Step Hyp Ref Expression
1 elpw2g
 |-  ( A e. U -> ( B e. ~P A <-> B C_ A ) )
2 1 adantl
 |-  ( ( U e. Univ /\ A e. U ) -> ( B e. ~P A <-> B C_ A ) )
3 grupw
 |-  ( ( U e. Univ /\ A e. U ) -> ~P A e. U )
4 gruelss
 |-  ( ( U e. Univ /\ ~P A e. U ) -> ~P A C_ U )
5 3 4 syldan
 |-  ( ( U e. Univ /\ A e. U ) -> ~P A C_ U )
6 5 sseld
 |-  ( ( U e. Univ /\ A e. U ) -> ( B e. ~P A -> B e. U ) )
7 2 6 sylbird
 |-  ( ( U e. Univ /\ A e. U ) -> ( B C_ A -> B e. U ) )
8 7 3impia
 |-  ( ( U e. Univ /\ A e. U /\ B C_ A ) -> B e. U )