| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simpl2 |
|- ( ( ( U e. Univ /\ Fun F /\ ( F " A ) C_ U ) /\ A e. U ) -> Fun F ) |
| 2 |
|
funrel |
|- ( Fun F -> Rel F ) |
| 3 |
|
df-ima |
|- ( F " A ) = ran ( F |` A ) |
| 4 |
|
resres |
|- ( ( F |` dom F ) |` A ) = ( F |` ( dom F i^i A ) ) |
| 5 |
|
resdm |
|- ( Rel F -> ( F |` dom F ) = F ) |
| 6 |
5
|
reseq1d |
|- ( Rel F -> ( ( F |` dom F ) |` A ) = ( F |` A ) ) |
| 7 |
4 6
|
eqtr3id |
|- ( Rel F -> ( F |` ( dom F i^i A ) ) = ( F |` A ) ) |
| 8 |
7
|
rneqd |
|- ( Rel F -> ran ( F |` ( dom F i^i A ) ) = ran ( F |` A ) ) |
| 9 |
3 8
|
eqtr4id |
|- ( Rel F -> ( F " A ) = ran ( F |` ( dom F i^i A ) ) ) |
| 10 |
1 2 9
|
3syl |
|- ( ( ( U e. Univ /\ Fun F /\ ( F " A ) C_ U ) /\ A e. U ) -> ( F " A ) = ran ( F |` ( dom F i^i A ) ) ) |
| 11 |
|
simpl1 |
|- ( ( ( U e. Univ /\ Fun F /\ ( F " A ) C_ U ) /\ A e. U ) -> U e. Univ ) |
| 12 |
|
simpr |
|- ( ( ( U e. Univ /\ Fun F /\ ( F " A ) C_ U ) /\ A e. U ) -> A e. U ) |
| 13 |
|
inss2 |
|- ( dom F i^i A ) C_ A |
| 14 |
13
|
a1i |
|- ( ( ( U e. Univ /\ Fun F /\ ( F " A ) C_ U ) /\ A e. U ) -> ( dom F i^i A ) C_ A ) |
| 15 |
|
gruss |
|- ( ( U e. Univ /\ A e. U /\ ( dom F i^i A ) C_ A ) -> ( dom F i^i A ) e. U ) |
| 16 |
11 12 14 15
|
syl3anc |
|- ( ( ( U e. Univ /\ Fun F /\ ( F " A ) C_ U ) /\ A e. U ) -> ( dom F i^i A ) e. U ) |
| 17 |
|
funforn |
|- ( Fun F <-> F : dom F -onto-> ran F ) |
| 18 |
|
fof |
|- ( F : dom F -onto-> ran F -> F : dom F --> ran F ) |
| 19 |
17 18
|
sylbi |
|- ( Fun F -> F : dom F --> ran F ) |
| 20 |
|
inss1 |
|- ( dom F i^i A ) C_ dom F |
| 21 |
|
fssres |
|- ( ( F : dom F --> ran F /\ ( dom F i^i A ) C_ dom F ) -> ( F |` ( dom F i^i A ) ) : ( dom F i^i A ) --> ran F ) |
| 22 |
19 20 21
|
sylancl |
|- ( Fun F -> ( F |` ( dom F i^i A ) ) : ( dom F i^i A ) --> ran F ) |
| 23 |
|
ffn |
|- ( ( F |` ( dom F i^i A ) ) : ( dom F i^i A ) --> ran F -> ( F |` ( dom F i^i A ) ) Fn ( dom F i^i A ) ) |
| 24 |
1 22 23
|
3syl |
|- ( ( ( U e. Univ /\ Fun F /\ ( F " A ) C_ U ) /\ A e. U ) -> ( F |` ( dom F i^i A ) ) Fn ( dom F i^i A ) ) |
| 25 |
|
simpl3 |
|- ( ( ( U e. Univ /\ Fun F /\ ( F " A ) C_ U ) /\ A e. U ) -> ( F " A ) C_ U ) |
| 26 |
10 25
|
eqsstrrd |
|- ( ( ( U e. Univ /\ Fun F /\ ( F " A ) C_ U ) /\ A e. U ) -> ran ( F |` ( dom F i^i A ) ) C_ U ) |
| 27 |
|
df-f |
|- ( ( F |` ( dom F i^i A ) ) : ( dom F i^i A ) --> U <-> ( ( F |` ( dom F i^i A ) ) Fn ( dom F i^i A ) /\ ran ( F |` ( dom F i^i A ) ) C_ U ) ) |
| 28 |
24 26 27
|
sylanbrc |
|- ( ( ( U e. Univ /\ Fun F /\ ( F " A ) C_ U ) /\ A e. U ) -> ( F |` ( dom F i^i A ) ) : ( dom F i^i A ) --> U ) |
| 29 |
|
grurn |
|- ( ( U e. Univ /\ ( dom F i^i A ) e. U /\ ( F |` ( dom F i^i A ) ) : ( dom F i^i A ) --> U ) -> ran ( F |` ( dom F i^i A ) ) e. U ) |
| 30 |
11 16 28 29
|
syl3anc |
|- ( ( ( U e. Univ /\ Fun F /\ ( F " A ) C_ U ) /\ A e. U ) -> ran ( F |` ( dom F i^i A ) ) e. U ) |
| 31 |
10 30
|
eqeltrd |
|- ( ( ( U e. Univ /\ Fun F /\ ( F " A ) C_ U ) /\ A e. U ) -> ( F " A ) e. U ) |
| 32 |
31
|
ex |
|- ( ( U e. Univ /\ Fun F /\ ( F " A ) C_ U ) -> ( A e. U -> ( F " A ) e. U ) ) |