Step |
Hyp |
Ref |
Expression |
1 |
|
simpl2 |
|- ( ( ( U e. Univ /\ Fun F /\ ( F " A ) C_ U ) /\ A e. U ) -> Fun F ) |
2 |
|
funrel |
|- ( Fun F -> Rel F ) |
3 |
|
df-ima |
|- ( F " A ) = ran ( F |` A ) |
4 |
|
resres |
|- ( ( F |` dom F ) |` A ) = ( F |` ( dom F i^i A ) ) |
5 |
|
resdm |
|- ( Rel F -> ( F |` dom F ) = F ) |
6 |
5
|
reseq1d |
|- ( Rel F -> ( ( F |` dom F ) |` A ) = ( F |` A ) ) |
7 |
4 6
|
eqtr3id |
|- ( Rel F -> ( F |` ( dom F i^i A ) ) = ( F |` A ) ) |
8 |
7
|
rneqd |
|- ( Rel F -> ran ( F |` ( dom F i^i A ) ) = ran ( F |` A ) ) |
9 |
3 8
|
eqtr4id |
|- ( Rel F -> ( F " A ) = ran ( F |` ( dom F i^i A ) ) ) |
10 |
1 2 9
|
3syl |
|- ( ( ( U e. Univ /\ Fun F /\ ( F " A ) C_ U ) /\ A e. U ) -> ( F " A ) = ran ( F |` ( dom F i^i A ) ) ) |
11 |
|
simpl1 |
|- ( ( ( U e. Univ /\ Fun F /\ ( F " A ) C_ U ) /\ A e. U ) -> U e. Univ ) |
12 |
|
simpr |
|- ( ( ( U e. Univ /\ Fun F /\ ( F " A ) C_ U ) /\ A e. U ) -> A e. U ) |
13 |
|
inss2 |
|- ( dom F i^i A ) C_ A |
14 |
13
|
a1i |
|- ( ( ( U e. Univ /\ Fun F /\ ( F " A ) C_ U ) /\ A e. U ) -> ( dom F i^i A ) C_ A ) |
15 |
|
gruss |
|- ( ( U e. Univ /\ A e. U /\ ( dom F i^i A ) C_ A ) -> ( dom F i^i A ) e. U ) |
16 |
11 12 14 15
|
syl3anc |
|- ( ( ( U e. Univ /\ Fun F /\ ( F " A ) C_ U ) /\ A e. U ) -> ( dom F i^i A ) e. U ) |
17 |
|
funforn |
|- ( Fun F <-> F : dom F -onto-> ran F ) |
18 |
|
fof |
|- ( F : dom F -onto-> ran F -> F : dom F --> ran F ) |
19 |
17 18
|
sylbi |
|- ( Fun F -> F : dom F --> ran F ) |
20 |
|
inss1 |
|- ( dom F i^i A ) C_ dom F |
21 |
|
fssres |
|- ( ( F : dom F --> ran F /\ ( dom F i^i A ) C_ dom F ) -> ( F |` ( dom F i^i A ) ) : ( dom F i^i A ) --> ran F ) |
22 |
19 20 21
|
sylancl |
|- ( Fun F -> ( F |` ( dom F i^i A ) ) : ( dom F i^i A ) --> ran F ) |
23 |
|
ffn |
|- ( ( F |` ( dom F i^i A ) ) : ( dom F i^i A ) --> ran F -> ( F |` ( dom F i^i A ) ) Fn ( dom F i^i A ) ) |
24 |
1 22 23
|
3syl |
|- ( ( ( U e. Univ /\ Fun F /\ ( F " A ) C_ U ) /\ A e. U ) -> ( F |` ( dom F i^i A ) ) Fn ( dom F i^i A ) ) |
25 |
|
simpl3 |
|- ( ( ( U e. Univ /\ Fun F /\ ( F " A ) C_ U ) /\ A e. U ) -> ( F " A ) C_ U ) |
26 |
10 25
|
eqsstrrd |
|- ( ( ( U e. Univ /\ Fun F /\ ( F " A ) C_ U ) /\ A e. U ) -> ran ( F |` ( dom F i^i A ) ) C_ U ) |
27 |
|
df-f |
|- ( ( F |` ( dom F i^i A ) ) : ( dom F i^i A ) --> U <-> ( ( F |` ( dom F i^i A ) ) Fn ( dom F i^i A ) /\ ran ( F |` ( dom F i^i A ) ) C_ U ) ) |
28 |
24 26 27
|
sylanbrc |
|- ( ( ( U e. Univ /\ Fun F /\ ( F " A ) C_ U ) /\ A e. U ) -> ( F |` ( dom F i^i A ) ) : ( dom F i^i A ) --> U ) |
29 |
|
grurn |
|- ( ( U e. Univ /\ ( dom F i^i A ) e. U /\ ( F |` ( dom F i^i A ) ) : ( dom F i^i A ) --> U ) -> ran ( F |` ( dom F i^i A ) ) e. U ) |
30 |
11 16 28 29
|
syl3anc |
|- ( ( ( U e. Univ /\ Fun F /\ ( F " A ) C_ U ) /\ A e. U ) -> ran ( F |` ( dom F i^i A ) ) e. U ) |
31 |
10 30
|
eqeltrd |
|- ( ( ( U e. Univ /\ Fun F /\ ( F " A ) C_ U ) /\ A e. U ) -> ( F " A ) e. U ) |
32 |
31
|
ex |
|- ( ( U e. Univ /\ Fun F /\ ( F " A ) C_ U ) -> ( A e. U -> ( F " A ) e. U ) ) |