Description: Any element of an element of a Grothendieck universe is also an element of the universe. (Contributed by Mario Carneiro, 9-Jun-2013)
Ref | Expression | ||
---|---|---|---|
Assertion | gruel | |- ( ( U e. Univ /\ A e. U /\ B e. A ) -> B e. U ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gruelss | |- ( ( U e. Univ /\ A e. U ) -> A C_ U ) |
|
2 | 1 | sseld | |- ( ( U e. Univ /\ A e. U ) -> ( B e. A -> B e. U ) ) |
3 | 2 | 3impia | |- ( ( U e. Univ /\ A e. U /\ B e. A ) -> B e. U ) |