Description: Any element of an element of a Grothendieck universe is also an element of the universe. (Contributed by Mario Carneiro, 9-Jun-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | gruel | |- ( ( U e. Univ /\ A e. U /\ B e. A ) -> B e. U ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gruelss | |- ( ( U e. Univ /\ A e. U ) -> A C_ U ) |
|
| 2 | 1 | sseld | |- ( ( U e. Univ /\ A e. U ) -> ( B e. A -> B e. U ) ) |
| 3 | 2 | 3impia | |- ( ( U e. Univ /\ A e. U /\ B e. A ) -> B e. U ) |