Description: A Grothendieck universe contains the singletons of its elements. (Contributed by Mario Carneiro, 9-Jun-2013)
Ref | Expression | ||
---|---|---|---|
Assertion | grusn | |- ( ( U e. Univ /\ A e. U ) -> { A } e. U ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfsn2 | |- { A } = { A , A } |
|
2 | grupr | |- ( ( U e. Univ /\ A e. U /\ A e. U ) -> { A , A } e. U ) |
|
3 | 2 | 3anidm23 | |- ( ( U e. Univ /\ A e. U ) -> { A , A } e. U ) |
4 | 1 3 | eqeltrid | |- ( ( U e. Univ /\ A e. U ) -> { A } e. U ) |