Metamath Proof Explorer


Theorem grusn

Description: A Grothendieck universe contains the singletons of its elements. (Contributed by Mario Carneiro, 9-Jun-2013)

Ref Expression
Assertion grusn
|- ( ( U e. Univ /\ A e. U ) -> { A } e. U )

Proof

Step Hyp Ref Expression
1 dfsn2
 |-  { A } = { A , A }
2 grupr
 |-  ( ( U e. Univ /\ A e. U /\ A e. U ) -> { A , A } e. U )
3 2 3anidm23
 |-  ( ( U e. Univ /\ A e. U ) -> { A , A } e. U )
4 1 3 eqeltrid
 |-  ( ( U e. Univ /\ A e. U ) -> { A } e. U )