Description: A Grothendieck universe contains the singletons of its elements. (Contributed by Mario Carneiro, 9-Jun-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | grusn | ⊢ ( ( 𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈 ) → { 𝐴 } ∈ 𝑈 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfsn2 | ⊢ { 𝐴 } = { 𝐴 , 𝐴 } | |
| 2 | grupr | ⊢ ( ( 𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈 ∧ 𝐴 ∈ 𝑈 ) → { 𝐴 , 𝐴 } ∈ 𝑈 ) | |
| 3 | 2 | 3anidm23 | ⊢ ( ( 𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈 ) → { 𝐴 , 𝐴 } ∈ 𝑈 ) |
| 4 | 1 3 | eqeltrid | ⊢ ( ( 𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈 ) → { 𝐴 } ∈ 𝑈 ) |