Metamath Proof Explorer


Theorem gruop

Description: A Grothendieck universe contains ordered pairs of its elements. (Contributed by Mario Carneiro, 10-Jun-2013)

Ref Expression
Assertion gruop ( ( 𝑈 ∈ Univ ∧ 𝐴𝑈𝐵𝑈 ) → ⟨ 𝐴 , 𝐵 ⟩ ∈ 𝑈 )

Proof

Step Hyp Ref Expression
1 dfopg ( ( 𝐴𝑈𝐵𝑈 ) → ⟨ 𝐴 , 𝐵 ⟩ = { { 𝐴 } , { 𝐴 , 𝐵 } } )
2 1 3adant1 ( ( 𝑈 ∈ Univ ∧ 𝐴𝑈𝐵𝑈 ) → ⟨ 𝐴 , 𝐵 ⟩ = { { 𝐴 } , { 𝐴 , 𝐵 } } )
3 simp1 ( ( 𝑈 ∈ Univ ∧ 𝐴𝑈𝐵𝑈 ) → 𝑈 ∈ Univ )
4 grusn ( ( 𝑈 ∈ Univ ∧ 𝐴𝑈 ) → { 𝐴 } ∈ 𝑈 )
5 4 3adant3 ( ( 𝑈 ∈ Univ ∧ 𝐴𝑈𝐵𝑈 ) → { 𝐴 } ∈ 𝑈 )
6 grupr ( ( 𝑈 ∈ Univ ∧ 𝐴𝑈𝐵𝑈 ) → { 𝐴 , 𝐵 } ∈ 𝑈 )
7 grupr ( ( 𝑈 ∈ Univ ∧ { 𝐴 } ∈ 𝑈 ∧ { 𝐴 , 𝐵 } ∈ 𝑈 ) → { { 𝐴 } , { 𝐴 , 𝐵 } } ∈ 𝑈 )
8 3 5 6 7 syl3anc ( ( 𝑈 ∈ Univ ∧ 𝐴𝑈𝐵𝑈 ) → { { 𝐴 } , { 𝐴 , 𝐵 } } ∈ 𝑈 )
9 2 8 eqeltrd ( ( 𝑈 ∈ Univ ∧ 𝐴𝑈𝐵𝑈 ) → ⟨ 𝐴 , 𝐵 ⟩ ∈ 𝑈 )