Metamath Proof Explorer
Description: Prove an existential. (Contributed by Rohan Ridenour, 12-Aug-2023)
|
|
Ref |
Expression |
|
Hypotheses |
rr-spce.1 |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝐴 ) → 𝜓 ) |
|
|
rr-spce.2 |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
|
Assertion |
rr-spce |
⊢ ( 𝜑 → ∃ 𝑥 𝜓 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
rr-spce.1 |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝐴 ) → 𝜓 ) |
2 |
|
rr-spce.2 |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
3 |
2
|
elexd |
⊢ ( 𝜑 → 𝐴 ∈ V ) |
4 |
|
isset |
⊢ ( 𝐴 ∈ V ↔ ∃ 𝑥 𝑥 = 𝐴 ) |
5 |
3 4
|
sylib |
⊢ ( 𝜑 → ∃ 𝑥 𝑥 = 𝐴 ) |
6 |
1
|
ex |
⊢ ( 𝜑 → ( 𝑥 = 𝐴 → 𝜓 ) ) |
7 |
6
|
eximdv |
⊢ ( 𝜑 → ( ∃ 𝑥 𝑥 = 𝐴 → ∃ 𝑥 𝜓 ) ) |
8 |
5 7
|
mpd |
⊢ ( 𝜑 → ∃ 𝑥 𝜓 ) |