Metamath Proof Explorer


Theorem rr-spce

Description: Prove an existential. (Contributed by Rohan Ridenour, 12-Aug-2023)

Ref Expression
Hypotheses rr-spce.1 ( ( 𝜑𝑥 = 𝐴 ) → 𝜓 )
rr-spce.2 ( 𝜑𝐴𝑉 )
Assertion rr-spce ( 𝜑 → ∃ 𝑥 𝜓 )

Proof

Step Hyp Ref Expression
1 rr-spce.1 ( ( 𝜑𝑥 = 𝐴 ) → 𝜓 )
2 rr-spce.2 ( 𝜑𝐴𝑉 )
3 2 elexd ( 𝜑𝐴 ∈ V )
4 isset ( 𝐴 ∈ V ↔ ∃ 𝑥 𝑥 = 𝐴 )
5 3 4 sylib ( 𝜑 → ∃ 𝑥 𝑥 = 𝐴 )
6 1 ex ( 𝜑 → ( 𝑥 = 𝐴𝜓 ) )
7 6 eximdv ( 𝜑 → ( ∃ 𝑥 𝑥 = 𝐴 → ∃ 𝑥 𝜓 ) )
8 5 7 mpd ( 𝜑 → ∃ 𝑥 𝜓 )