Metamath Proof Explorer


Theorem rexlimdvaacbv

Description: Unpack a restricted existential antecedent while changing the variable with implicit substitution. The equivalent of this theorem without the bound variable change is rexlimdvaa . (Contributed by Rohan Ridenour, 3-Aug-2023)

Ref Expression
Hypotheses rexlimdvaacbv.1 ( 𝑥 = 𝑦 → ( 𝜓𝜃 ) )
rexlimdvaacbv.2 ( ( 𝜑 ∧ ( 𝑦𝐴𝜃 ) ) → 𝜒 )
Assertion rexlimdvaacbv ( 𝜑 → ( ∃ 𝑥𝐴 𝜓𝜒 ) )

Proof

Step Hyp Ref Expression
1 rexlimdvaacbv.1 ( 𝑥 = 𝑦 → ( 𝜓𝜃 ) )
2 rexlimdvaacbv.2 ( ( 𝜑 ∧ ( 𝑦𝐴𝜃 ) ) → 𝜒 )
3 1 cbvrexv ( ∃ 𝑥𝐴 𝜓 ↔ ∃ 𝑦𝐴 𝜃 )
4 2 rexlimdvaa ( 𝜑 → ( ∃ 𝑦𝐴 𝜃𝜒 ) )
5 3 4 syl5bi ( 𝜑 → ( ∃ 𝑥𝐴 𝜓𝜒 ) )