Metamath Proof Explorer


Theorem rexlimddvcbvw

Description: Unpack a restricted existential assumption while changing the variable with implicit substitution. Similar to rexlimdvaacbv . The equivalent of this theorem without the bound variable change is rexlimddv . Version of rexlimddvcbv with a disjoint variable condition, which does not require ax-13 . (Contributed by Rohan Ridenour, 3-Aug-2023) (Revised by Gino Giotto, 2-Apr-2024)

Ref Expression
Hypotheses rexlimddvcbvw.1 ( 𝜑 → ∃ 𝑥𝐴 𝜃 )
rexlimddvcbvw.2 ( ( 𝜑 ∧ ( 𝑦𝐴𝜒 ) ) → 𝜓 )
rexlimddvcbvw.3 ( 𝑥 = 𝑦 → ( 𝜃𝜒 ) )
Assertion rexlimddvcbvw ( 𝜑𝜓 )

Proof

Step Hyp Ref Expression
1 rexlimddvcbvw.1 ( 𝜑 → ∃ 𝑥𝐴 𝜃 )
2 rexlimddvcbvw.2 ( ( 𝜑 ∧ ( 𝑦𝐴𝜒 ) ) → 𝜓 )
3 rexlimddvcbvw.3 ( 𝑥 = 𝑦 → ( 𝜃𝜒 ) )
4 3 cbvrexvw ( ∃ 𝑥𝐴 𝜃 ↔ ∃ 𝑦𝐴 𝜒 )
5 2 rexlimdvaa ( 𝜑 → ( ∃ 𝑦𝐴 𝜒𝜓 ) )
6 4 5 syl5bi ( 𝜑 → ( ∃ 𝑥𝐴 𝜃𝜓 ) )
7 1 6 mpd ( 𝜑𝜓 )