Description: Unpack a restricted existential assumption while changing the variable with implicit substitution. Similar to rexlimdvaacbv . The equivalent of this theorem without the bound variable change is rexlimddv . Version of rexlimddvcbv with a disjoint variable condition, which does not require ax-13 . (Contributed by Rohan Ridenour, 3-Aug-2023) (Revised by Gino Giotto, 2-Apr-2024)
Ref | Expression | ||
---|---|---|---|
Hypotheses | rexlimddvcbvw.1 | |- ( ph -> E. x e. A th ) |
|
rexlimddvcbvw.2 | |- ( ( ph /\ ( y e. A /\ ch ) ) -> ps ) |
||
rexlimddvcbvw.3 | |- ( x = y -> ( th <-> ch ) ) |
||
Assertion | rexlimddvcbvw | |- ( ph -> ps ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexlimddvcbvw.1 | |- ( ph -> E. x e. A th ) |
|
2 | rexlimddvcbvw.2 | |- ( ( ph /\ ( y e. A /\ ch ) ) -> ps ) |
|
3 | rexlimddvcbvw.3 | |- ( x = y -> ( th <-> ch ) ) |
|
4 | 3 | cbvrexvw | |- ( E. x e. A th <-> E. y e. A ch ) |
5 | 2 | rexlimdvaa | |- ( ph -> ( E. y e. A ch -> ps ) ) |
6 | 4 5 | syl5bi | |- ( ph -> ( E. x e. A th -> ps ) ) |
7 | 1 6 | mpd | |- ( ph -> ps ) |