Metamath Proof Explorer


Theorem rexlimddvcbvw

Description: Unpack a restricted existential assumption while changing the variable with implicit substitution. Similar to rexlimdvaacbv . The equivalent of this theorem without the bound variable change is rexlimddv . Version of rexlimddvcbv with a disjoint variable condition, which does not require ax-13 . (Contributed by Rohan Ridenour, 3-Aug-2023) (Revised by Gino Giotto, 2-Apr-2024)

Ref Expression
Hypotheses rexlimddvcbvw.1
|- ( ph -> E. x e. A th )
rexlimddvcbvw.2
|- ( ( ph /\ ( y e. A /\ ch ) ) -> ps )
rexlimddvcbvw.3
|- ( x = y -> ( th <-> ch ) )
Assertion rexlimddvcbvw
|- ( ph -> ps )

Proof

Step Hyp Ref Expression
1 rexlimddvcbvw.1
 |-  ( ph -> E. x e. A th )
2 rexlimddvcbvw.2
 |-  ( ( ph /\ ( y e. A /\ ch ) ) -> ps )
3 rexlimddvcbvw.3
 |-  ( x = y -> ( th <-> ch ) )
4 3 cbvrexvw
 |-  ( E. x e. A th <-> E. y e. A ch )
5 2 rexlimdvaa
 |-  ( ph -> ( E. y e. A ch -> ps ) )
6 4 5 syl5bi
 |-  ( ph -> ( E. x e. A th -> ps ) )
7 1 6 mpd
 |-  ( ph -> ps )