Metamath Proof Explorer


Theorem rexlimdvaacbv

Description: Unpack a restricted existential antecedent while changing the variable with implicit substitution. The equivalent of this theorem without the bound variable change is rexlimdvaa . (Contributed by Rohan Ridenour, 3-Aug-2023)

Ref Expression
Hypotheses rexlimdvaacbv.1
|- ( x = y -> ( ps <-> th ) )
rexlimdvaacbv.2
|- ( ( ph /\ ( y e. A /\ th ) ) -> ch )
Assertion rexlimdvaacbv
|- ( ph -> ( E. x e. A ps -> ch ) )

Proof

Step Hyp Ref Expression
1 rexlimdvaacbv.1
 |-  ( x = y -> ( ps <-> th ) )
2 rexlimdvaacbv.2
 |-  ( ( ph /\ ( y e. A /\ th ) ) -> ch )
3 1 cbvrexv
 |-  ( E. x e. A ps <-> E. y e. A th )
4 2 rexlimdvaa
 |-  ( ph -> ( E. y e. A th -> ch ) )
5 3 4 syl5bi
 |-  ( ph -> ( E. x e. A ps -> ch ) )