Description: Unpack a restricted existential antecedent while changing the variable with implicit substitution. The equivalent of this theorem without the bound variable change is rexlimdvaa . (Contributed by Rohan Ridenour, 3-Aug-2023)
Ref | Expression | ||
---|---|---|---|
Hypotheses | rexlimdvaacbv.1 | |- ( x = y -> ( ps <-> th ) ) |
|
rexlimdvaacbv.2 | |- ( ( ph /\ ( y e. A /\ th ) ) -> ch ) |
||
Assertion | rexlimdvaacbv | |- ( ph -> ( E. x e. A ps -> ch ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexlimdvaacbv.1 | |- ( x = y -> ( ps <-> th ) ) |
|
2 | rexlimdvaacbv.2 | |- ( ( ph /\ ( y e. A /\ th ) ) -> ch ) |
|
3 | 1 | cbvrexv | |- ( E. x e. A ps <-> E. y e. A th ) |
4 | 2 | rexlimdvaa | |- ( ph -> ( E. y e. A th -> ch ) ) |
5 | 3 4 | syl5bi | |- ( ph -> ( E. x e. A ps -> ch ) ) |