Metamath Proof Explorer


Theorem rexlimdvaacbv

Description: Unpack a restricted existential antecedent while changing the variable with implicit substitution. The equivalent of this theorem without the bound variable change is rexlimdvaa . (Contributed by Rohan Ridenour, 3-Aug-2023)

Ref Expression
Hypotheses rexlimdvaacbv.1 x = y ψ θ
rexlimdvaacbv.2 φ y A θ χ
Assertion rexlimdvaacbv φ x A ψ χ

Proof

Step Hyp Ref Expression
1 rexlimdvaacbv.1 x = y ψ θ
2 rexlimdvaacbv.2 φ y A θ χ
3 1 cbvrexv x A ψ y A θ
4 2 rexlimdvaa φ y A θ χ
5 3 4 syl5bi φ x A ψ χ