Metamath Proof Explorer


Theorem rexlimddvcbvw

Description: Unpack a restricted existential assumption while changing the variable with implicit substitution. Similar to rexlimdvaacbv . The equivalent of this theorem without the bound variable change is rexlimddv . Version of rexlimddvcbv with a disjoint variable condition, which does not require ax-13 . (Contributed by Rohan Ridenour, 3-Aug-2023) (Revised by Gino Giotto, 2-Apr-2024)

Ref Expression
Hypotheses rexlimddvcbvw.1 φ x A θ
rexlimddvcbvw.2 φ y A χ ψ
rexlimddvcbvw.3 x = y θ χ
Assertion rexlimddvcbvw φ ψ

Proof

Step Hyp Ref Expression
1 rexlimddvcbvw.1 φ x A θ
2 rexlimddvcbvw.2 φ y A χ ψ
3 rexlimddvcbvw.3 x = y θ χ
4 3 cbvrexvw x A θ y A χ
5 2 rexlimdvaa φ y A χ ψ
6 4 5 syl5bi φ x A θ ψ
7 1 6 mpd φ ψ