Metamath Proof Explorer


Theorem rexlimddvcbv

Description: Unpack a restricted existential assumption while changing the variable with implicit substitution. Similar to rexlimdvaacbv . The equivalent of this theorem without the bound variable change is rexlimddv . Usage of this theorem is discouraged because it depends on ax-13 , see rexlimddvcbvw for a weaker version that does not require it. (Contributed by Rohan Ridenour, 3-Aug-2023) (New usage is discouraged.)

Ref Expression
Hypotheses rexlimddvcbv.1
|- ( ph -> E. x e. A th )
rexlimddvcbv.2
|- ( ( ph /\ ( y e. A /\ ch ) ) -> ps )
rexlimddvcbv.3
|- ( x = y -> ( th <-> ch ) )
Assertion rexlimddvcbv
|- ( ph -> ps )

Proof

Step Hyp Ref Expression
1 rexlimddvcbv.1
 |-  ( ph -> E. x e. A th )
2 rexlimddvcbv.2
 |-  ( ( ph /\ ( y e. A /\ ch ) ) -> ps )
3 rexlimddvcbv.3
 |-  ( x = y -> ( th <-> ch ) )
4 3 2 rexlimdvaacbv
 |-  ( ph -> ( E. x e. A th -> ps ) )
5 1 4 mpd
 |-  ( ph -> ps )