Metamath Proof Explorer


Theorem rr-spce

Description: Prove an existential. (Contributed by Rohan Ridenour, 12-Aug-2023)

Ref Expression
Hypotheses rr-spce.1
|- ( ( ph /\ x = A ) -> ps )
rr-spce.2
|- ( ph -> A e. V )
Assertion rr-spce
|- ( ph -> E. x ps )

Proof

Step Hyp Ref Expression
1 rr-spce.1
 |-  ( ( ph /\ x = A ) -> ps )
2 rr-spce.2
 |-  ( ph -> A e. V )
3 2 elexd
 |-  ( ph -> A e. _V )
4 isset
 |-  ( A e. _V <-> E. x x = A )
5 3 4 sylib
 |-  ( ph -> E. x x = A )
6 1 ex
 |-  ( ph -> ( x = A -> ps ) )
7 6 eximdv
 |-  ( ph -> ( E. x x = A -> E. x ps ) )
8 5 7 mpd
 |-  ( ph -> E. x ps )