Metamath Proof Explorer
Description: Prove an existential. (Contributed by Rohan Ridenour, 12-Aug-2023)
|
|
Ref |
Expression |
|
Hypotheses |
rr-spce.1 |
|
|
|
rr-spce.2 |
|
|
Assertion |
rr-spce |
|
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rr-spce.1 |
|
| 2 |
|
rr-spce.2 |
|
| 3 |
2
|
elexd |
|
| 4 |
|
isset |
|
| 5 |
3 4
|
sylib |
|
| 6 |
1
|
ex |
|
| 7 |
6
|
eximdv |
|
| 8 |
5 7
|
mpd |
|