Metamath Proof Explorer
Description: Prove an existential. (Contributed by Rohan Ridenour, 12-Aug-2023)
|
|
Ref |
Expression |
|
Hypotheses |
rr-spce.1 |
|
|
|
rr-spce.2 |
|
|
Assertion |
rr-spce |
|
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
rr-spce.1 |
|
2 |
|
rr-spce.2 |
|
3 |
2
|
elexd |
|
4 |
|
isset |
|
5 |
3 4
|
sylib |
|
6 |
1
|
ex |
|
7 |
6
|
eximdv |
|
8 |
5 7
|
mpd |
|